
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2005-09

Analysis of binary XML suitability for NATO
tactical messaging

Bayer, Matthew E.
Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/2012

This publication is a work of the U.S. Government as definedin Title 17, United
States Code, Section 101. As such, it is in thepublic domain, and under the
provisions of Title 17, United StatesCode, Section 105, is not copyrighted in the U.S.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

ANALYSIS OF BINARY XML SUITABILITY FOR
NATO TACTICAL MESSAGING

by

Matthew E. Bayer

September 2005

 Thesis Advisor: Don Brutzman
 Co-Advisor: Terry Norbraten
 Second Reader: Don McGregor

THIS PAGE INTENTIONALLY LEFT BLANK

i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2005

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Analysis of Binary XML Suitability for NATO
Tactical Messaging
6. AUTHOR Matthew E. Bayer

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME AND ADDRESS
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME AND ADDRESS

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT

 The ability to efficiently transfer information among tactical systems is essential for network-centric operations.
However, maintaining interoperability among heterogeneous networks and applications is a challenging issue,
especially for large enterprises such as the US Department of Defense and NATO. Each of these organizations
maintain extensive communication networks of tactical systems that process and manage all types of data. Additional
complexity is added when considering that many systems are built with a variety of proprietary or legacy data formats.
Establishing and maintaining interoperability is difficult.
 Using XML, many interoperability issues can now be successfully addressed. XML provides a self-describing
way to effectively structure information that can be applied to compose diverse tactical communications. However,
XML is inefficient for network transmission since it uses a text-based format which can consume more memory (and
thus more bandwidth) than binary equivalents. In addition, parsing text-based documents is slow and computationally
expensive. One potential solution is to use GZIP to reduce the file size before transmission. Unfortunately, this solution
has limitations since it often provides suboptimal compression and also requires additional processing time when
extracting data. Recent standardization efforts have identified promising new encodings for XML that use binary
representations to reduce parsing time, memory size, and bandwidth requirements.
 This thesis surveys conversion of NATO tactical data link information into an XML format for distribution to
command and control centers. General benefits and tradeoffs are then considered for applying binary XML encoding to
that data. This thesis also examines work done by the World Wide Web Consortium in examining common use cases
and developing the requirements needed for a binary XML encoding. The performance of two specific implementations,
XML Schema based Binary Compression (XSBC) and Fast Infoset (FI), are compared with GZIP. XML files of varying
sizes are encoded in binary form, then compression ratios and parsing times are compared and analyzed. Initial results
are excellent and further work is recommended.

15. NUMBER OF
PAGES

129

14. SUBJECT TERMS: XML Schema Based Compression (XSBC), Extensible Mark-up
Language (XML), Tactical Data Links, Binary XML, Fast Infoset

16. PRICE CODE
17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

ANALYSIS OF BINARY XML SUITABILITY FOR NATO TACTICAL MESSAGING

Matthew E. Bayer
Ensign, United States Navy

B.S., United States Naval Academy, 2004

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS TECHNOLOGY (C3)

from the

NAVAL POSTGRADUATE SCHOOL
September 2005

Author: Matthew E. Bayer

Approved by: Don Brutzman

Thesis Advisor

 Terry Norbraten
 Co-Advisor

Don McGregor
Second Reader

Dan Boger
Chair, Department of Information Sciences

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

 The ability to efficiently transfer information among tactical systems is essential

for network-centric operations. However, maintaining interoperability among

heterogeneous networks and applications is a challenging issue, especially for large

enterprises such as the US Department of Defense and NATO. Each of these

organizations maintain extensive communication networks of tactical systems that

process and manage all types of data. Additional complexity is added when considering

that many systems are built with a variety of proprietary or legacy data formats.

Establishing and maintaining interoperability is difficult.

 Using XML, many interoperability issues can now be successfully addressed.

XML provides a self-describing way to effectively structure information that can be

applied to compose diverse tactical communications. However, XML is inefficient for

network transmission since it uses a text-based format which can consume more

memory (and thus more bandwidth) than binary equivalents. In addition, parsing text-

based documents is slow and computationally expensive. One potential solution is to

use GZIP to reduce the file size before transmission. Unfortunately, this solution has

limitations since it often provides suboptimal compression and also requires additional

processing time when extracting data. Recent standardization efforts have identified

promising new encodings for XML that use binary representations to reduce parsing

time, memory size, and bandwidth requirements.

 This thesis surveys conversion of NATO tactical data link information into an

XML format for distribution to command and control centers. General benefits and

tradeoffs are then considered for applying binary XML encoding to that data. This

thesis also examines work done by the World Wide Web Consortium in examining

common use cases and developing the requirements needed for a binary XML

encoding. The performance of two specific implementations, XML Schema based

Binary Compression (XSBC) and Fast Infoset (FI), are compared with GZIP. XML files

of varying sizes are encoded in binary form, then compression ratios and parsing times

are compared and analyzed. Initial results are excellent and further work is

recommended.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION...1

A. PROBLEM STATEMENT...1
B. MOTIVATION ...2
C. OBJECTIVES ...2
D. THESIS ORGANIZATION ..3

II. RELATED WORK AND BACKGROUND ...5
A. INTRODUCTION ..5
B. XML ..5

1. XML Characteristics...5
2. XML Schema...7
3. XML Security ..8

a. XML Canonicalization ...8
b. XML Signature ...8
c. XML Encryption ...9

C. EVOLUTION OF A BINARY XML ENCODING..9
1. Dial-a-Behavior Protocol ...9
2. Cross Format Schema Protocol (XFSP).......................................10

D. FAST INFOSET..11
1. Overview ...11
2. Algorithm Description ...12

E. EXTENSIBLE 3D (X3D) COMPRESSED BINARY ENCODING (ECB)15
1. X3D CBE Requirements...15
2. Interim Solution..17

F. SUMMARY ...17
III. XML SCHEMA-BASED BINARY COMPRESSION (XSBC)19

A. INTRODUCTION ..19
B. BACKGROUND ...19
C. XML SERIALIZATION..19
D. XML DESERIALIZATION...22
E. CURRENT USES ...23

1. AUV Workbench...23
2. XJ3D ..24
3. XSBC Comparison Tool...24

F. POTENTIAL USES...25
G. SUMMARY ...26

IV. EVOLUTION OF BINARY XML ..27
A. INTRODUCTION ..27
B. W3C BINARY WORKSHOP...27

1. Arguments against Binary XML..27
2. Arguments for Binary XML..29

C. XML BINARY CHARACTERIZATION (XBC) WORKING GROUP............30
1. Introduction ..30
2. XML Binary Use Cases ..30

 viii

a. Web Services for Small Devices ..31
b. Military Information Interoperability32
c. Sensor Processing and Communication...........................32
d. Extensible Messaging and Presence Protocol (XMPP)

Instant Messaging Compression33
3. XML Binary Properties...33

a. Introduction ...33
b. Additional Considerations..34

4. XML Binary Characterization ..36
a. Definition of Binary XML...36
b. Development of Minimum Requirements36
c. Conclusions...39

D. EFFICIENT XML INTERCHANGE ...40
E. ANALYSIS OF XSBC VIA PRESCRIBED CHARACTERIZATION40

1. Must Support Properties ...40
2. Must not Prevent Properties ...41
3. Conclusion ...42

F. RECOMMENDED STRATEGIES FOR NATO AND U.S. DOD..................42
G. SUMMARY ...43

V. NATO REAL-TIME TACTICAL COMMUNICATIONS ..45
A. INTRODUCTION ..45
B. TACTICAL DATA LINKS ...45

1. Introduction ..45
2. LINK 11..46

a. TADIL-A..47
b. TADIL-B..47

3. LINK 16..48
C. NATO XML PROGRAM ...50

1. NC3A Workshop...51
2. NIRIS ...52

a. TITO ..53
b. TIXO..53
c. XITO..54
d. Experimentation ..55

D. XSBC ADAPTATION TO NIRIS...59
1. Motivations ...59
2. Implementation...60

a. Issues Discovered...61
E. SUMMARY ...62

VI. EXPERIMENTS, DATA COLLECTION AND ANALYSIS.....................................63
A. INTRODUCTION ..63
B. BACKGROUND ...63
C. OVERVIEW ..63
D. METHODOLOGY ...64
E. EXPERIMENT ..65
F. ANALYSIS..69

 ix

1. Compression Performance ...69
2. Parse Time..69

G. SUMMARY ...70
VII. CONCLUSIONS AND FUTURE WORK ...71

A. CONCLUSIONS ...71
B. RECOMMENDATIONS FOR FUTURE WORK ..72

APPENDIX A. SOURCE CODE AVAILABILITY ..75
APPENDIX B. EXPLANATION OF SIMPLE EXPERIMENTAND SOURCE
 CODE ..77

A. MOTIVATION ...77
B. DESCRIPTION ...77

1. SimpleMain ...77
2. SimpleClient ...77
3. SimpleServer ..78

C. DATA SAMPLES ...79
D. SOURCE CODE ...81

1. SimpleMain.java ...81
2. SimpleClient.java ...82
3. SimpleServer.java ..84
4. XsbcSerializer.java...86
5. XsbcTransaction.java ..91
6. CubbyHole.java ..96

LIST OF REFERENCES..99
INITIAL DISTRIBUTION LIST ... 103

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. XML example showing self-describing tags and the ability to mark-up any

type of data .. 5
Figure 2. Fast Infoset relationship diagram showing that an XML Infoset is serialized

into a Fast Infoset value and then document. Conversely, parsing takes a
Fast Infoset document and produces a Fast Infoset value and finally a
normal XML Infoset (Sandoz et al., 2004).. 13

Figure 3. Placement of the Fast Infoset document in the XML stack. A Fast Infoset
document is an alternate encoding to XML (Sandoz, 2005) 14

Figure 4. Requirements of a binary encoding for X3D to include sub-categories of
supported data types (Web3D Consortium, 2003)....................................... 16

Figure 5. The top pane shows normal XML document. The bottom pane shows the
same document after XSBC has replaced element and attribute names
with integer tokens (Serin, 2003) ... 21

Figure 6. Sample XSBC deserialization from a stream and XML tree reconstruction
(Serin, 2003) .. 22

Figure 7. XSBC Comparison Tool showing a 3.54KB File being compressed by
85.9%... 25

Figure 8. XML Binary property decision tree to determine which properties should
be directly supported and which are supported by associate technologies
(Goldman & Lenkov, 2005) .. 37

Figure 9. LINK16 stacked net architecture showing the separation of nets into
logical communication groups (Downs, 2005) ... 49

Figure 10. LINK16 round trip demonstration via the NIRIS software suite along with
providing web services of LINK16 data.. 54

Figure 11. Web service architecture needs currently met by NIRIS and the future
needs that NIRIS will meet (Howland, 2004) ... 55

Figure 12. A TIDE WISE client running in a browser displaying NVG data from a
recorded LINK16 feed (Howland, 2004) .. 56

Figure 13. TIXO-STGP experiment set-up showing connectivity of global web
services through a SECRET VPN.. 58

Figure 14. Decision desktop display displaying data pulled from international web
services in the UK and Norway (Howland, 2004)... 59

Figure 15. XSBC integration into NIRIS showing a mandatory TIXO interface and
optional XITO Interface. Also shown is the binary format’s transparency to
the user.. 60

Figure 16. Latency equation with known file size and bandwidth.................................. 64
Figure 17. XSBC and Fast Infoset compression comparison.. 66
Figure 18. XSBC and Fast Infoset compression comparison for files less than 10 KB . 66
Figure 19. Compression ratio comparison for encodings with GZIP 67
Figure 20. Compression ratio comparison for encodings with GZIP for files less than

10KB.. 67
Figure 21. Parse Times for XSBC, Fast Infoset, and GZIP Combinations 68

 xii

Figure 22. Parse Times for XSBC, Fast Infoset and GZIP Combinations for Files
Less than 10 KB .. 68

Figure 23. Network latency of wired LAN using XSBC.. 79
Figure 24. Network latency of a wireless connection to the LAN using XSBC 80

 xiii

LIST OF TABLES

Table 1. Use cases assembled by XBC for a binary XML encoding (M. Cokus &
Percias-Geertsen, 2005b).. 31

Table 2. Desired algorithmic and format properties of a binary XML standard as
derived from use cases by the W3C (M. Cokus & Percias-Geertsen,
2005b).. 34

Table 3. Minimum requirements for binary XML Including those that are W3C best
practice standards (Goldman & Lenkov, 2005).. 38

Table 4. XSBC score table of W3C XBC MUST SUPPORT properties 41
Table 5. XSBC score table of W3C XBC MUST NOT PREVENT properties............. 42
Table 6. United States military and NATO standards for tactical data links (Air Land

Sea Application Center, 2000) ... 46
Table 7. Approximate sizes of files used in XSBC and Fast Infoset compression

tests to show performance over a range of file sizes 65

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ABBREVIATIONS

AUV Autonomous Underwater Vehicle

API Application Program Interface

ASN.1 Abstract Syntax Notation One

BPS Bits Per Second

C4I Command, Control, Communications, Computer’s and

 Intelligence

CAOC Combined Air Operations Center

COTS Commercial Off-the-Shelf

CVS Concurrent Versioning System

DFI/DUI Data Field Identifier / Data Usage Identifier

DIS Distributive Interactive Simulation

DoD Department of Defense

DOM Document Object Model

DTD Document Type Definition

FEC Forward Error Correction

GZIP GNU Zip

ICC Integrated Command and Control

IDE Integrated Development Environment

IP Internet Protocol

ISO International Standards Organization

LOS Line of Sight

KB Kilobytes

MB Megabytes

 xvi

Mbs Megabits Per Second

MD5 Message-Digest Algorithm 5

MOVES Modeling, Virtual Environments, and Simulation

NATO North Atlantic Treaty Organization

NC3A NATO Consultation, Command and Control Agency

NIRIS Networked Interoperable Real-time Information Services

NPS Naval Postgraduate School

NVE Networked Virtual Environments

SA Situational Awareness

SAX Simple API for XML

SHAPE Supreme Headquarters Allied Powers Europe

StAX Streaming API for XML

STANAG NATO Standardization Agreement

STGP Shared Tactical Ground Picture

TCP Transmission Control Protocol

TADIL Tactical Digital Information Link

TDL Tactical Data Links

TIDE NATO web service that stands for: Transforming technology

 towards Information superiority, Decision superiority,

 and Execution Superiority

TITO Tracks in, TDL out, or, TDL in Track out, or TDL in, TDL out

TIXO TDL in, XML out

UDP User Datagram Protocol

UTF-8 Unicode Transformation Format-8

 xvii

VMF Variable Message Format

VPN Virtual Private Network

VRML Virtual Reality Modeling Language

W3C World Wide Web Consortium

WISE A Java GUI portal displaying web-based services and live

 Link data from the net

X3D Extensible 3D

XFSP Cross Format Schema Protocol

XITO XML in, Tactical Data out

XML Extensible Markup Language

XSBC XML Schema-based Binary Compression

XSL Extensible Style Language

XSLT Extensible Style Language Transformation

XLTF Extensible Light Track Format

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

ACKNOWLEDGMENTS

I would like to thank Dr. Don Brutzman for his encouragement, patience, and

insight into the problems at hand. I am also very thankful for his willingness to advise a

young and inexperienced Ensign. His vision and enthusiasm for his work is truly

contagious.

I would also like to thank Terry Norbraten for his patience in answering my many

questions of both great and small importance. He also accompanied me on my

research trip to NC3A and the credit for its subsequent success belongs to him. His

excitement towards the project was a great encouragement to me.

Finally, I must thank Jesus Christ who ultimately enabled me to complete this

thesis.

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 xxi

EXECUTIVE SUMMARY

Maintaining interoperability among heterogeneous networks and data processing

systems has proven to be a challenging issue. However, with the advent of the

Extensible Mark-Up Language (XML), many of these issues are being resolved as it

provides the ability to describe almost any data. However, XML uses a textual format

that is expensive to parse and has a large memory footprint. This is because text

representations in memory are often larger than a binary equivalent.

The need for a more efficient encoding of XML became apparent. One

implementation of this concept, known as XML Schema based Binary Compression

(XSBC), was the result of the work of an NPS thesis student seeking to define dynamic

protocols used in networked virtual environments. XSBC tokenizes tags and replaces

them with integer values. It then tries to reduce the data within the tag to the simplest

possible data type while retaining the data’s original value. This process coupled with

GZIP produces a file that can be less than 10% of its original file size and is faster to

parse.

 The North Atlantic Treaty Organization (NATO) has performed work to convert

tactical link data into an XML format for distribution to command and control centers.

The data format transmitted in the tactical environment is the same, but command

centers convert the data into XML using software known as the Networked

Interoperable Real-time Information Services (NIRIS). NIRIS fuses data to create a

common operating picture and has also been modified to act as a server for various

web services. With this architecture, a simple web application contacts NIRIS via a

secure VPN over the internet and is able to graphically display TDL data or perform

whatever task the web application requires.

Finally, this work details the performance characteristics of XSBC as compared

to Sun Microsystems’ Fast Infoset. The resulting performance shows that XSBC

provides superior compression and comparable parse time (within a factor of 3

unoptimized) for files under 500 kb. For larger files XSBC’s parsing time begins to grow

much more rapidly than Fast Infoset’s parse times, indicating that Fast Infoset is a

better solution for those cases.

 xxii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. PROBLEM STATEMENT
The United States military is increasingly integrating network technology into its

operations. The value of information sharing as well as its feasibility is clearly displayed

by the Internet. This provided an impetus for the Network Centric Warfare doctrine

which states that “a robustly networked force improves information sharing [which]

enhances the quality of information and shared situational awareness [to] dramatically

increase mission effectiveness” (Alberts, Garstka, & Stein, 1999).

However, current forces are operating with older equipment whose requirements

during design were not influenced by a net-centric doctrine. As a result, many

information systems are “stovepiped” meaning they perform their tasks well but are

isolated from communicating with other systems due to propriety standards. The

development and construction for a system in the military is often contracted out and

therefore various systems may be designed and manufactured by several different

companies. These interoperability concerns are amplified when working in a joint or

coalition environment where systems may be manufactured in different countries.

However, some of these obstacles can be overcome through modeling data

using the Extensible Markup Language (XML). This relatively new technology allows

one to model virtually any type of data. Once the data from the stovepiped systems is

in this common, industry standard format it can be collected and fused for a more robust

information sharing capability. The design goals of XML include human readability and

ease of use which translates into creating, editing, and transporting XML as text. While

this makes developing XML easier, it cause problems in other areas. The most

significant drawbacks brought on by a text based format are the large memory footprint

and parsing cost. Many XML files are very large text files whose memory footprint is

much larger than that of a binary equivalent. Though the data may be interoperable it is

not efficient for network transportation in this form. This problem is exacerbated by the

limited amount of bandwidth available in the tactical environment. Also, parsing text has

a higher computational cost than parsing a more simple data type. This is a concern for

2

servers running web services that process a large volume of XML documents. A new

binary encoding for XML is needed to continue to reap the data modeling benefits of

XML while making it cost effective in terms of network and computational resources.

B. MOTIVATION
The recent massive infusion of information technology into military operations is

an attempt to gain a tactical advantage through information superiority. The ability to

consistently maintain better situational awareness than the enemy through the efficient

gathering, fusing, and dissemination of information allows one to iterate through the

decision cycle faster than the enemy and keep his operations reactionary, and denying

him the ability to take the initiative. Simply put, information superiority seeks to get the

right information to the right people at the right time.

The NATO Consultation, Command and Control Agency (NC3A), seeking to use

XML to gain information superiority, has already completely converted data from two

major tactical data links into an XML format (Howland, Dr. Paul E., 2004). This is a

large step towards network centric warfare through communication system

interoperability. This is especially necessary for an organization comprised of 26

different countries each complete with its own military equipment and communication

protocols and standards. With the XML-ized data in place, however, the issues

mentioned above arose. Knowing that the MOVES Institute had developed a working

solution NC3A contacted MOVES seeking a binary XML solution. In a collaborative

effort, the binary XML solution was successfully integrated into the ongoing work at

NC3A.

C. OBJECTIVES
This thesis seeks to assess where XML is a viable solution to implementing

network centric doctrine into tactical data links. XML has been used commercially to

create and maintain interoperability among dissimilar systems and to model multiple

types of data. XML is extensible which provides room for adaptation under frequently

3

changing requirements. Associated standards provide support for security via validation

against an XML schema, digital signatures, and encryption.

This thesis also examines the standardization efforts toward a binary XML

solution by the W3C, and examines whether the solution developed at NPS meets the

characterization requirements. Currently, no candidate solution has been officially

considered, much less a standard chosen since additional future integration and testing

is necessary.

Finally, this work assess the performance characteristics of XSBC as compared

to Fast Infoset and determine what use cases might derive the most benefit from either

solution. Parsing costs and compression ratios are mutually exclusive, which suggests

certain scenarios benefit more from other particular solutions.

D. THESIS ORGANIZATION
Six chapters comprise this work

• Chapter I-Introduction. This chapter seeks to give a brief overview of the topics
discussed as well as the motivation behind the work.

• Chapter II-Related Work and Background. This chapter describes the
technologies that lay the foundation for the XML as well as two binary XML
solutions.

• Chapter III-Evolution of Binary XML. This chapter follows the standardization
process of the W3C from the beginning workshop to current recommendation for a
binary solution.

• Chapter IV-NATO Real Time Tactical Communications. This chapter describes
the operational details of LINK11 and LINK16 and the work NC3A has done to
integrate XML into those tactical data links.

• Chapter V-Experiments, Data Collection and Analysis. This chapter compares
network performance including compression and latency of XSBC and Fast Infoset.

• Chapter VI-Conclusions and Future Work. This chapter provides the
recommendations based on completed work and suggestions for areas of further
study.

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

II. RELATED WORK AND BACKGROUND

A. INTRODUCTION
This chapter provides an overview to XML, Dial-a-Behavior protocol, XFSP, and

Fast Infoset. Each of these technologies is similar in nature to or supported the

development of XSBC.

B. XML
1. XML Characteristics
The Extensible Markup Language (XML) is useful for modeling data of all types.

It can model very complex multi-layered data structures or something as simple as the

roster for a baseball team as shown in Figure 1. It can be created and altered with any

text editor. It is a way to markup data so that it can easily be understood by a computer.

Figure 1. XML example showing self-describing tags and the ability to mark-up any

type of data

XML has many similarities to the ubiquitous Hypertext Markup Language (HTML)

that supports the bulk of the Internet. Referring back to Figure 1, one can see that it

contains tags—words bracketed by ‘<’ and ‘>’—to describe the data between them

(Boss, 2003). This data used to describe other data is known as metadata. However,

unlike HTML, all XML tags are defined by the user and do not have reserved or set

meaning. While it is conventional to use tags that are helpful in describing the data, this

6

is not required. The first set of tags could be any combination of letters; it doesn’t

actually have to be a word, but well designed XML does have helpful element names

and can be read and understood. It is in a text format only to offer ease of use in

creating, editing, and debugging for developers. XML is designed to be intentionally

verbose to facilitate ease of use. While text is almost always more expensive in terms

of memory to store, compression algorithms have become more optimized and the cost

of memory has decreased (Boss, 2003). This was a justification for the W3C to allow

that property into the XML 1.0 specification.

It is also important to realize that XML is not an isolated technology, but the

foundation for multiple technologies (Boss, 2003). These other developments include

Extensible Style Language (XSL), Document Object Model (DOM), and XML Schema.

XSL is a language based on XML used for expressing style sheets. DOM is a way of

representing XML in memory and XML schema is a way to validate the structural

integrity of a XML file.

XML is a relatively new technology, but has its roots in Standard Generalized

Markup Language (SGML) as does HTML (Hunter et al., 2003). SGML was created to

structure large complex documents and as a result is a very complicated yet powerful

language. But SGML was too unwieldy for simpler applications and XML and HTML

were born. There were designed to be subsets of SGML to be used for specific

purposes and have served their purposes well. In keeping with language evolution, the

W3C recently established a hybrid language of XML and HTML known as XHTML

(Boss, 2003). It contains some of the syntactical structure of XML and is meant as a

complete replacement for HTML.

One of the strengths of XML is its modularity. XML is used all over the world to

model data and identical tag names are being used for different purposes. The tag

<player> used on the baseball roster has a different meaning from the same tag used in

selecting what media application to play an audio file. However, the concept of

namespaces has allowed vocabularies of element names to be uniquely identified to

avoid confusion. This allows for developments such as the Resources Description

Framework which provides a common definition for various data items. Once

7

applications agree on the meaning of data, the data can be passed from application to

application to further integrate functionality. An example is being able to identify people

in a picture on the web from your e-mail address book (Boss, 2003). The picture and

web browser both need to have the metadata available on the picture and be able to

communicate to the e-mail application. The other strength of XML is that it is license

free, platform independent, and well supported (Boss, 2003). The absence of a license

and ability to operate on different operating systems promotes a broad base of support.

License free means one can read, write, and develop in XML without having to pay for it

as well as develop applications that use it. As a result, the open source community has

produced a number of high quality and effective tools for XML free of charge. Internet

searches for XML return millions of hits showing the expanse of the interest and support

available.

2. XML Schema
XML Schema is an associate technology to XML. A schema document provides

a definition of the structure and contents of a specific XML file (Hunter et al., 2003). It

delineates the exact order of the elements found in a file, the name and type of the

elements, and the name and type of attributes. Schema documents are themselves

created using XML and a schema can be written for any XML file. Once the schema is

created, only a small addition is needed in the XML file to reference the namespace of

the schema. The two documents are now linked and the XML file can be tested to see

if it conforms, or validates, to the schema. Multiple implementations of schema

validation programs exist, but all basically function the same way. If a name of an

element is misspelled or the elements are out of order, or if data is of the wrong type,

then the documents will not validate but rather return a schema error. This verifies the

structure and data types within the document.

8

3. XML Security
a. XML Canonicalization
The word canonical means a standard or a measurement for all others to

compare against. While a standard already exists for well formed XML, flexibility still

exists within those guidelines. Two documents must contain identical data, but one

document might use empty elements while the other uses start and end tag pairs.

Other differences include having elements in a different order and different handling of

whitespace inside tags (Leung, 2004). These are just a few examples of how the same

data might be represented in various seemingly insignificant variations.

Canonicalization is applying a rule set to resolve these differences into a

standard form (Leung, 2004). Having a standard for how the XML needs to be

consistently formatted is crucial when attempting to verify that two documents are

identical. Digest algorithms, like MD5, create different hash values for two XML

documents that contain the same Infoset but also contain differences allowed by the

“well-formed” rule set. As a result, documents are canonicalized before determining

their hash values. By canonicalizing XML files, one solves the problem with digest

algorithms. For a complete specification of the canonicalized form consult the W3C’s

Canonical XML Version 1.0 document.

b. XML Signature
XML Signature is a method for incorporating proven public key encryption

techniques into XML documents. The first step is for the signer to hash the document.

This produces a string of characters or numbers. This string is then encrypted with the

signer’s private key and the resulting encrypted hash value is attached to the document.

Upon receipt, the receiver uses the public key to decrypt the hash and compare it with a

hash he has performed on the document. If the two values are identical then it is known

that the document was not altered in any way (Leung, 2004).

The XML Signature standard can be utilized as an enveloped signature or

a detached signature. An enveloped signature is alongside the data it is signing, inside

the document, while a detached signature is signing data that is not part of XML

9

document containing the signature. In either implementation, none of the data in the

signed document is actually encrypted. The hash value incorporated in the signature is

only used to verify the integrity of the document, not encrypt the actual data. A signed

document is still human readable.

Both uses of the XML Signature Recommendation employ the

<Signature> element as defined by the standard W3C namespace (Leung, 2004). The

<Signature> element contains two standard elements: <SignedInfo> and <Signature

Value> (Leung, 2004). The former element contains information concerning the

canonicalization algorithm to use in addition to the signature method used to sign the

data. The <SignedInfo> element also contains references to data that is signed. The

<Signature Value> element contains the actual hash or signed value. An optional

element inside <Signature Value> is <KeyInfo> which contains information on how to

retrieve the key or actually provides the key itself (Leung, 2004).

c. XML Encryption
 XML Encryption differs from XML Signatures in that it replaces the data to

be protected with <EncryptedData> element (Leung, 2004). This renders the encrypted

portions of the data unreadable without the key. XML Encryption can be used to

encrypt an entire document, particular elements or only the data within an element. The

<EncryptedData> is much simpler than the <Signature> element. It contains an

attribute to specifying the algorithm used and an element named <CipherData> which

either encapsulates the actual cipher value or a reference on how to obtain it (Leung,

2004).

C. EVOLUTION OF A BINARY XML ENCODING
1. Dial-a-Behavior Protocol
Dial-a-Behavior Protocol was developed by NPS in order to dynamically change

protocol syntax over DIS (McGregor, 2000). The Dial-a-Behavior protocol is a network

solution for using multiple data formats or protocols without having to hard code each

unique format. The common approach for UDP communication across a network, due

10

to bandwidth constraints, is to send data in binary form as a stream of bytes. While very

efficient for transmission, this also requires the client to know the exact format of the

data being sent so that it can parse the stream at the correct offsets to gather the data

and then assign the correct units. To solve this issue, an XML file is created to describe

the syntax of each format. These XML files are distributed to the clients and they now

have a precise format to both write packets and receive packets. Additionally, any new

protocols added to the network only require the addition of another XML file to describe

the format.

2. Cross Format Schema Protocol (XFSP)

 The cross format schema protocol (XFSP) was a solution for implementing a run-

time extensible application layer protocol for a distributed system namely NPSNET-V

(Serin, 2003). Ekrim Serin, a Turkish Naval Officer, sought to add flexibility to the

NPSNET-V simulation by allowing for communication protocols to be changed or even

created during run time. Traditionally, a programmer had to hard code the protocols

into every host and then compile them which meant the entire simulation had to be

brought to a halt and restarted after the changes were implemented. Due to the

distributed nature of the network, homogeneity across the simulation hosts is practically

impossible to achieve. Therefore, possessing the ability to tailor the communication

protocols based on network performance or limitations of certain users provides an

invaluable tool to those running the simulation.

Serin’s research led him to Extensible Markup Language (XML). More precisely,

it led him to the use of XML Schema, which provides a rigid structure for defining XML

documents as an encoding basis for diverse documents. In this way, an XML schema

might be used to define new protocols while the XML documents themselves were

actually the transmitted messages. It is important to note that XFSP is a solution for

creating a dynamic protocol and not the protocol semantics (which is a much more

difficult problem). However, the verbose nature of XML does not lend itself well to be

transmitted over a network with low bandwidth. Serin reasoned that if each user had

the schema used to define the protocol, a simple substitution scheme could be

implemented to reduce the physical size of the messages to be transmitted (Serin,

11

2003). Thus, he developed the Extensible Cross Format Schema Protocol. He then

conducted generation and serialization trials to gather data to show the parsing time

improvements available through XFSP.

XFSP also found use with Extensible 3D (X3D) graphics standard, a three

dimensional modeling language that includes XML encodings. Modeling any object with

high fidelity in three dimensions requires a considerable amount of data as information

about thousands of data points in space have to be encoded. X3D is no exception

which is why it proved to be a good candidate for XFSP. Using the GZIP compression

algorithm in addition to using XFSP proved to create a file 78% smaller than the original

(Serin, 2003).

D. FAST INFOSET
1. Overview
Fast Infoset is a component of Sun Microsystems Fast Web Services technology.

An open source implementation of Fast Infoset was newly released in the Java Web

Services Developer Pack 1.6. This is a solution for securing the benefits of networking

via XML without having to suffer the costs of parsing and serializing text XML

documents. The uses of XML in various applications are multiplying rapidly as the

technology matures, but even a cursory review of XML reveals many advantages.

Primarily XML enables cross-platform data exchange as any XML parser can extract the

information from the document. Also, with user-defined tags, developers are free to

structure the data in the most useful way without being constrained to specified tags.

However, the cost in time and CPU cycles to parse and serialize XML documents can

be considerable due to the redundant and verbose nature of XML. Many XML

documents occupy more memory and are more computationally expensive than their

binary equivalents. This makes its use difficult by mobile devices that are limited by

battery life and heavily constrained by processing power. Fast Infoset seeks to strike

balance by reducing both XML file sizes and processing time at the expense of human

readability (Sandoz & Percias-Geersten, 2005). It is a single open-source binary XML

solution among many that are seeking to accomplish the same tasks. However, Sun

12

has submitted the ITU-T Rec. X.891 | ISO/IEC 24824-1 (Fast Infoset) specification to

both ITU-T and ISO for standardization (Sandoz & Percias-Geersten, 2005).

2. Algorithm Description
As the name implies, Fast Infoset relies upon the W3C XML Information Set, a

layer of XML abstraction, in order to determine the structure of the document for

compression purposes (Cowan & Tobin, 2004). More specifically, the XML Information

Set is a collection of standardized definitions that can be used to map out the structure

of any XML document (Gudgin, 2004). It can be thought of as a conceptual

representation of a DOM tree. The tree structure and its nodes are referred to as the

information set and information items, respectively. Utilizing the tree concept, Fast

Infoset maintains the hierarchical structure of the XML document. Taking advantage of

this standardized structure Fast Infoset is able to implement its compression algorithm

in lieu of using an XML Schema. However, a schema can be used for validation to

verify the round tripability of the document. This independence from a schema adds

flexibility to this particular binary XML implementation (Sandoz, Triglia, & Percias-

Geertsen, 2004).

Figure 2 shows the simple flow of how an XML document is first serialized to

produce a fast Infoset value which in turn is encoded to produce the fast Infoset

documents. It is this document that is actually submitted for transportation. While

similar to a DOM tree, the XML Infoset can be streamed and does not have to be stored

entirely in memory in order to serialize it. The Fast Infoset value that is created in the

intermediate step is then encoded by the compression scheme.

13

Figure 2. Fast Infoset relationship diagram showing that an XML Infoset is serialized

into a Fast Infoset value and then document. Conversely, parsing takes a Fast Infoset
document and produces a Fast Infoset value and finally a normal XML Infoset (Sandoz

et al., 2004)

The principal method used for compression is indexing recurring strings (Sandoz

et al., 2004). As the document is serialized each common string is noted and placed

into a table. Any additional occurrence of the string is replaced with an index that

references the appropriate string in the table. During deserialization, the parser creates

an identical table by indexing the first occurrence, and then replaces the index with the

string value found in the table. Another compression method applies the same logic to

qualified names. The qualified names are indexed which when decoded are referenced

to an actual object which eliminates the need for redundant calculations to determine

the namespace of a particular element information item or attribute information item

(Sandoz et al., 2004).

Efforts were also made to streamline the serializing and parsing processes. An

example is how end tags are encoded. While start tags are indexed as described

above, end tags are handled differently. The Fast Infoset document does not require

14

end tags because it uses the start tags to automatically generate appropriate end tags

during the parsing process. As a result, all end tags are simply marked with a reserved

integer value so they can be identified during parsing. In addition, Fast Infoset does not

check for escaping of character data in an effort to streamline the serialization process

(Sandoz et al., 2004).

Figure 3. Placement of the Fast Infoset document in the XML stack. A Fast Infoset

document is an alternate encoding to XML (Sandoz, 2005)

Fast Infoset is intended to be completely integrated into current systems using

XML. It seeks to be completely transparent to the user by becoming an alternate

encoding and thus finds its place in the XML stack as shown in Figure 3.

An API is provided for further development, but most users will enjoy the benefits

of it without being aware of an additional software module running before transmission.

Fast Infoset produces XML documents that are completely round-trippable as long as a

DTD is not referenced within the document (Sandoz & Percias-Geersten, 2005). The

reason for this is that Fast Infoset was designed to operate independently of DTDs and

cannot perform the necessary dynamic computations to determine properties from the

minimalist information provided in a DTD (Sandoz & Percias-Geersten, 2005). With this

independence from a schema or DTD the actual XML document need only to be

serialized into the Infoset layer on the stack via SAX, StAX, or another implementation

to be round-trippable. This shows the motivation for Sun to seek standardization as this

format might become a popular encoding alternative for the family of technologies

based on XML

15

E. EXTENSIBLE 3D (X3D) COMPRESSED BINARY ENCODING (ECB)
X3D is an XML format for describing 3D graphic objects for communication

applications. It provides many improvements over its processor, the Virtual Reality

Modeling Language (VRML) (Web3D Consortium, 2005a). By representing the 3D data

in XML, X3D also provides real-time extensibility as well as easy integration into web

services. XML also allows the 3D content to be used on various platforms.

1. X3D CBE Requirements
In 2003 the Web3D Consortium released a request for proposals for an X3D

Compressed Binary Encoding (Web3D Consortium, 2003). This request was made to

address the memory issues involved in reducing X3D file size over a network. XML

based networking was of particular concern due to Web3D’s strategies for web services

and real-time applications. As a result, the X3D working group created the following

requirements for the compressed binary encoding. Figure 4 shows the results of the

working group. Note the requirements under “Multiple, Separable Data Types” are the

specific data types desired to be supported.

16

Figure 4. Requirements of a binary encoding for X3D to include sub-categories of

supported data types (Web3D Consortium, 2003)

1. X3D Compatibility. The compressed binary encoding shall be able to encode all of
the abstract functionality described in X3D Abstract Specification.

2. Interoperability. The compressed binary encoding shall contain identical
information to the other X3D encodings (XML and Classic VRML). It shall support
an identical round-trip conversion between the X3D encodings.

3. Multiple, separable data types. The compressed binary encoding shall support
multiple, separable media data types, including all node (element) and field
(attribute) types in X3D. In particular, it shall include geometric compression for the
following.

o Geometry - polygons and surfaces, including NURBS
o Interpolation data - spline and animation data, including particularly long

sequences such as motion capture (also see Streaming requirement)
o Textures - PixelTexture, other texture and multitexture formats (also see

Bundling requirement)
o Array Datatypes - arrays of generic and geometric data types
o Tokens - tags, element and attribute descriptors, or field and node textual

headers
4. Processing Performance. The compressed binary encoding shall be easy and

efficient to process in a runtime environment. Outputs must include directly typed
scene-graph data structures, not just strings which might then need another parsing
pass. End-to-end processing performance for construction of a scene-graph as in-
memory typed data structures (i.e. decompression and deserialization) shall be
superior to that offered by gzip and string parsing.

5. Ease of Implementation. Binary compression algorithms shall be easy to
implement, as demonstrated by the ongoing Web3D requirement for multiple
implementations. Two (or more) implementations are needed for eventual
advancement, including at least one open-source implementation.

6. Streaming. Compressed binary encoding will operate in a variety of network-
streaming environments, including http and sockets, at various (high and low)
bandwidths. Local file retrieval of such files shall remain feasible and practical.

7. Authorability. Compressed binary encoding shall consist of implementable
compression and decompression algorithms that may be used during scene-
authoring preparation, network delivery and run-time viewing.

8. Compression. Compressed binary encoding algorithms will together enable
effective compression of diverse datatypes. At a minimum, such algorithms shall
support lossless compression. Lossy compression alternatives may also be
supported. When compression results are claimed by proposal submitters, both
lossless and lossy characteristics must be described and quantified.

9. Security. Compressed binary encoding will optionally enable security, content
protection, privacy preferences and metadata such as encryption, conditional
access, and watermarking. Default solutions are those defined by the W3C
Recommendations for XML Encryption and XML Signature.

10. Bundling. Mechanisms for bundling multiple files (e.g. X3D scene, Inlined
subscenes, image files, audio file, etc.) into a single archive file will be considered.

11. Intellectual Property Rights (IPR). All technology submissions must follow the
predeclaration requirements of the Web3D Consortium IPR policy in order to be
considered for inclusion.

17

Most of the requirements are straightforward. X3D compatibility requires the

encoding to be able to represent all the functionality of X3D. Interoperability requires

the coding to be able to round trip through XML, VRML, and normal X3D (Web3D

Consortium, 2005a). This ensures backwards compatibility. The streaming

requirement is logical as X3D is meant for communication with interactive applications

which places a heavy emphasis on responsiveness. Requirements of interest are the

security and bundling requirements. The security requirement specifies support for the

XML Encryption and XML Signature standards to be able to protect 3D content (Web3D

Consortium, 2005a). In addition, access management and privacy controls were

desired. The bundling property explores the ability of the encoding to allow X3D to be

self contained by consolidating X3D scenes, images, and audio files into a single file.

2. Interim Solution
The Web3D Consortium evaluated generic binary XML compression candidates.

Once the specific solution was chosen continued work on performance tuning and

optimization can now be continued. XSBC was considered by the Consortium along

with Sun’s Fast Infoset implementation. After a careful review of performance

standards and requirements, it was decided that Fast Infoset provided the best specified

capabilities and thus chosen as the solution. It was then included in the draft ISO/IEC

19776 standard for binary encodings of X3D (Web3D Consortium, 2005b). If a W3C

standard emerges for binary XML, that recommendation will supersede Fast Infoset as

the bases for information-theoretic compression.

F. SUMMARY
This chapter describes the structure and functionality of XML and its related

technologies in addition to introducing and describing XFSP and Fast Infoset which are

two binary XML encodings.

18

THIS PAGE INTENTIONALLY LEFT BLANK

19

III. XML SCHEMA-BASED BINARY COMPRESSION (XSBC)

A. INTRODUCTION
This chapter gives a brief history of XSBC and describes the serialization and

deserialization processes and current applications of XSBC.

B. BACKGROUND
Cross Format Schema Protocol (XFSP) was developed by Ekrim Serin, a

computer science student at NPS, for the transmission of schema based networking

protocols. He wanted to show that large networked virtual environments could reliably

run entirely on dynamic schema protocols (Serin, 2003). XFSP provided a way to take

protocols defined in XML, serialize them for transmission over the network, and then

deserialize and be used by entities in the simulation. His source code was enhanced by

Yumetech Inc. using modern software engineering practices and design patterns. NPS

then changed the name of the project to XML Schema based Binary Compression

(XSBC).

C. XML SERIALIZATION
The first step in the algorithm is to parse the schema associated with the file to

be serialized. As the schema is parsed XSBC generates tables to hold information that

can be referenced later during the tokenization. An element table records the XPath

expression of an element as well as its datatype. In addition, unique integer values

(tokens) are assigned to both the start and end tags. For attributes, a separate table is

constructing containing the XPath and datatype as well as a token to represent the

attribute name. The integer values 0, 1, and 2 are not assigned to any element or

attribute but are used to delineate attributes, identify elements that contain data, and

other special cases (Serin, 2003). Once these tables are created, the XPath and token

values are used to create hash tables for quicker reference (Serin, 2003).

Problems arise during schema parsing when attributes or elements have

identical names. XSBC needs to ensure that unique token values are assigned to each

20

attribute and element for correct deserialization. Therefore, XSBC examines parent

element names and data types in order to make these distinctions.

Once the tables have been created XSBC replaces all element tags with the

integer tokens stored in the hash table. The same replacement is also preformed for

attribute names. It is important to note that none of the payload data is indexed and

replaced with an integer, but is serialized into its appropriate binary representation.

Figure 5 provides a basic representation of this process with the caveat that the integer

token replaces the tag brackets “<” and “>” in addition to the text inside. The brackets

remain in the figure to facilitate recognition of the replacement process. The top section

shows the original XML file with its descriptive tags while the bottom displays a

representation of the file after the replacement algorithm has run. This replacement

process and the binary payload conversion are what are responsible for the reduced

XSBC file size. The memory required to store a element name is one byte for each

character in the string plus two more bytes—one for each of the tag brackets “<” and

“>”. A short integer however requires only 2 bytes (Sun Microsystems, 2005). Since

the token requires the same amount of memory as the brackets, the token will always

use less memory than entire element or attribute name.

21

Figure 5. The top pane shows normal XML document. The bottom pane shows the
same document after XSBC has replaced element and attribute names with integer

tokens (Serin, 2003)

In addition, XSBC also seeks to automatically perform useful type conversions. If

the schema indicates a marked-up string value is a number, then XSBC will convert it

into a binary numeric representation so that it is recognized not as text but as a number.

This is useful for data binding purposes such as assigning the value to Java variable.

XSBC also seeks to reduce file size by examining the type of the data payload to

see if it can be simplified to a representation that occupies fewer bytes. An attribute of

type long, for example, will allocate eight bytes of memory (Sun Microsystems, 2005). If

XSBC determines that no data loss will occur, it will convert the data to an integer or a

short integer to save space. While this process adds additional processing time, it also

produces more efficient compression. Once all replacements and type conversions are

complete the document is serialized, via DOM4J, and streamed over the network.

22

D. XML DESERIALIZATION
Deserialization is a straightforward process and it begins by receiving the data

stream and capturing the tag numbers. These tag numbers are then compared to the

table created during serialization in order to retrieve the element or attribute associated

with it. After the tags are resolved, the data is read from the stream in its binary form

(Serin, 2003). Once the tags are used to create elements and attributes, the data is

then bound to them. As the tags and data arrive, the order and structure of the XML

document is rebuilt through a series of simple stack operations. The reconstruction of

an example XML file is shown in Figure 6. Once this process is complete a schema can

be used to validate the integrity of the newly rebuilt file.

Figure 6. Sample XSBC deserialization from a stream and XML tree reconstruction

(Serin, 2003)

23

E. CURRENT USES
XSBC has a myriad of potential applications since it can operate on any well-

formed XML document defined by a schema. However, the compression benefits tend

to make it more readily applicable to areas where bandwidth is a significant concern. It

also can aid applications which are required to parse large XML files, as the binary

encoding simplifies this process. Below are current applications that are utilizing XSBC.

1. AUV Workbench
The Autonomous Unmanned Vehicle Workbench is an ongoing work at NPS to

develop a robust toolkit for AUV simulations. The workbench is built entirely from Java,

XML, and X3D. It is used for AUV mission planning and will eventually be used to

execute commands to control the robot.

The Workbench accurately models an underwater environment, and can also be

used to evaluate sonar modeling and hydrodynamics responses for future AUVs. A

centrally important feature is the 3D visualization of the model while executing the

mission provided via X3D. One can also load an old archived mission file and view the

playback for mission analysis.

This playback capability is available because as the AUV model executes its

mission it streams all the mission results via TCP sockets. The mission results file,

encoded in XML, contains all the commands executed by the AUV as well as position

data. The generated TCP stream is captured by an XSBC server thread which

subsequently transforms the data in a binary XML format for archiving purposes.

Currently, this TCP stream is a loopback, to demonstrate this capability, but MOVES

has conducted experiments in which the AUV robot, within the simulation, was remotely

controlled via a VPN streamed the data to the remote location. One goal of the

Workbench is to actually control the physical AUV robot via XML command sent

acoustically using XSBC. The robot can then stream data back to the surface in the

same manner. In order to support such a difficult transmission medium forward error

correction (FEC) has also been added to the XSBC module with in the AUV Workbench

(Norbraten, 2004).

24

2. XJ3D
XJ3D is a set of open source tools for handling VRML97 and X3D content.

Written completely in Java and open source, it is a portable and free solution for

rendering X3D images. The X3DElementReader class implements XSBC’s

ElementReader interface and uses it to parse and handle data. The ElementReader

class, while similar in functionality to the SAX ContentHandler, does not convert the

data into a string representation but leaves it in its binary form. This prevents any

unnecessary conversions to a string by keeping the data in a binary format.

3. XSBC Comparison Tool
The XSBC Comparison Tool is a GUI interface for XSBC encoding that captures

and displays the parsing and compression performance in regard to a particular file

chosen by the user. The ultimate goal for this tool is to output the compression

statistics into an XML tagset which can be used as an exemplar regression test, but

currently it is an excellent way to discover the exact performance benefits XSBC has for

particular XML files.

GNU Zip or GZIP is also incorporated by the comparison tool to provide

additional compression after the XSBC encoding. After processing, the selected XML

file the tool displays following metrics: the original file size, the file size with GZIP

applied, the XSBC encoded file size, and the XSBC encoded file with GZIP applied. In

addition the tool also captures and displays machine independent parsing times for

each of the compression configurations. A sample file was processed and is displayed

in Figure 7. This tool is bundled with the XSBC code and is open source and available

on the Internet. (See Appendix C) It is important to note that since XSBC is reliant

upon a schema for encoding, the XSD file for the desired XML must also be co-located

with the selected XML file to process.

The tool has also been further modified to include the same comparison support

for Fast Infoset. A more detailed analysis of both XSBC and Fast Infoset performance

is located in chapter V in which this tool was used extensively.

25

Figure 7. XSBC Comparison Tool showing a 3.54KB File being compressed by
85.9%

F. POTENTIAL USES

As previously mentioned, XSBC was originally developed as a way to create

dynamic network protocols for virtual environments. This allows for applications to

handle various packet payloads that have been created on the fly. These protocols,

based on XSBC, can be implemented on any network and the protocols themselves

customized to meet specific needs.

As demonstrated by the AUV Workbench, XSBC can be used in conjunction with

streaming data and is not restricted to operating on static files. This opens the door for

web applications. Other real time streaming applications are also possible such as

rendering 3D scenes.

26

G. SUMMARY
This chapter described the algorithm by which XSBC serializes and deserializes

XML documents. It also shows some current applications of XSBC.

27

IV. EVOLUTION OF BINARY XML

A. INTRODUCTION
This chapter follows the process by which the W3C determined the requirements

to be met by binary XML, as well as the properties a standard encoding should have

and how to proceed in the future. It also examines XSBC against the properties a

proposed standard must contain.

B. W3C BINARY WORKSHOP

In September of 2003, W3C organized and conducted the W3C Workshop on

Binary Interchange of XML Information Item Sets (Lilley & Karmarkar, 2003). The

workshop contained an array of international members including professionals from

multiple software vendors, various academic institutions and a US defense think tank

(Lilley & Karmarkar, 2003). The end goal for the workshop was to decide whether or not

the W3C should charter a working group for further investigation into adopting a

standard for a binary XML encoding (Lilley et al., 2003). The three day conference

consisted of various members presenting either their proprietary binary XML solution

and/or concerns in regard to establishing an internationally recognized standard. The

discussion ranged from discouraging the formation of a standard to optimistic specific

use cases to be considered while testing candidate solutions.

1. Arguments against Binary XML
Those in opposition to the creation of a standard fall into three categories: those

that think a viable binary XML encoding is not currently feasible, those that believe it is

not necessary, and those opposed to the costs of deploying a new format.

The members opposed to a binary standard cited the multiple and varied uses of

XML which produce equally varied requirements and priorities in optimization. The

properties developers are most interested in trying to optimize include memory footprint,

parsing time, and generation time.

28

Mobile devices are constrained in physical size which also greatly limits the

amount of physical memory available. Also, wireless networks lag behind wired

networks in bandwidth availability. As a result, in order for these devices to take full

advantage of XML, an efficient way to transmit and store these documents is needed.

In this scenario, memory footprint of the binary encoding takes priority over generation

and parsing speed. However, mobile devices are additionally limited in processing

power and, more critically, battery life. As a result, processing efficiency is a significant

benefit in mobile applications.

On the other end of the spectrum is a high-performance server with memory to

spare. In this instance, the document generation and parsing times for incoming

documents is emphasized. Memory is plentiful and upgradeable, but time cannot be

regained. These examples exhibit the existing tradeoff between a smaller memory

footprint and longer parse time as it is extremely difficult to increase the compression of

a file format without incurring any additional processing costs (Pal, Marsh, & Layman,

2003). This may suggest that, in lieu of a single standard, multiple formats might be

utilized, but this is counter-productive to the overall goals of XML considering the

motivations for establishing a standard in the first place (Pal et al., 2003). Creating

multiple standards that are each optimized for a specific use case is detrimental to

keeping XML interoperable which has proven to be one of its greatest strengths. This

leads one to the conclusion that a single standard, if it satisfies the requirements, is

greatly preferred. However, some argue that a single standard might be too

compromise-saturated so that it provides universally mediocre performance which may

not meet the needs of any particular use case that prompted any compromise (Pal et

al., 2003).

Others argue that not enough evidence exists to merit a new encoding; that the

majority of the requirements used to support the need for binary XML can be met

through optimizing XML or one of its familial technologies (Conner & Mendelsohn,

2003). The idea is that developments (such as cheap/fast memory and processing) in

current technologies can solve many of these issues. Coupled with this thought is the

idea that Moore’s law, which states that processing power roughly doubles every 18

months, has enabled developers to stray from the discipline of striving to code the

29

smallest, most efficient solutions (Wikipedia, 2005). Another concern, in a similar line of

thought, is whether any useful encoding developed now will not become obsolete as

processing power increases rapidly according to Moore’s law. The encoding must

consist of improvements of a substantial nature such that it will continue to be valuable

beyond just the near future.

2. Arguments for Binary XML
The consensus of the participating working group members, however, simply

disagreed with the dissenting minority’s previous evaluation of both the state of XML

and the need for an alternate binary encoding (Lilley et al., 2003). The primary view of

these members was that a real need for an additional encoding exists and, although a

perfect solution does not, a feasible solution answering a sufficient set of requirements

can be found.

The sheer number of fledgling solutions appearing in the market provides

evidence enough that a real need exits and deserves advanced optimal solutions. The

Workshop was encouraged to approach the issue as an engineering problem and

choose a solution based on the 80/20 principle (Orchard, 2003). This means choosing

a solution that offers the greatest gain in performance, while losing the least number of

other properties, and satisfies the greatest proportion of the use cases. It may be true

that a selected standard might not be the optimal solution for particular instances, but

the benefit of widespread acceptance and use can greatly outweigh those outlying

scenarios. This approach was successfully undertaken when XML itself was

introduced.

The crucial elements to consider in the 80/20 engineering process are the use

cases. One must be careful to discern between the needs for greater XML performance

that are attributed to the design of XML and which are the result of inefficient

applications, verbose data, etc. (Orchard, 2003). The scenarios that require a novel

solution which will not be fixed by faster processors or more memory are the scenarios

that become the use cases which, later on, prove to be invaluable. These use cases

help to prioritize technical requirements.

30

At the close of the workshop, which entailed three days of discussion, an

informed consensus agreement was reached among the members present that the

W3C should further investigate Binary XML and charter a working group as an

appropriate forum to do so (Lilley et al., 2003).

C. XML BINARY CHARACTERIZATION (XBC) WORKING GROUP
1. Introduction
In May of 2004 the XML Binary Characterization Working Group conducted its

first face to face meeting. The charter for the working group specified that the following

deliverables were to be produced by March of 2005: a use cases document, a

properties document, and a characterization document. The documents are complete,

publicly available via the W3C website, and are reviewed below.

2. XML Binary Use Cases
Use cases are simply realistic scenarios where XML, due to its design, has

proven to fall short in providing an adequate solution. Care was taken in to ensure that

the final eighteen approved use cases covered all aspects of XML utilization. Below are

all eighteen use cases and descriptions of the four use cases that are relevant to this

work (M. Cokus & Percias-Geertsen, 2005a).

31

W3C XML Binary Use Cases
 1. Metadata in Broadcast Systems
 2. Floating Point Arrays in the Energy Indu
 3. X3D Graphics Model Compression, Serialization, and Transmission
 4. Web Services for Small Devices
 5. Web Services within the Enterprise
 6. Electronic Documents
 7. FIXML in the Securities Industry
 8. Multimedia XML Documents for Mobile Handsets
 9. Intra/Inter Business Communication
10. XMPP Instant Messaging Compression
11. XML Documents in Persistent Store
12. Business and Knowledge Processing
13. XML Content-based Routing and Publish Subscription
14. Web Services Routing
15. Military Information Interoperability
16. SyncML for Data Synchronization
17. Sensor Processing and Communication
18. Supercomputing and Grid Processing

Table 1. Use cases assembled by XBC for a binary XML encoding (M. Cokus &

Percias-Geertsen, 2005b)

a. Web Services for Small Devices
In the past 10 years handheld devices have become more powerful and

user friendly and thus gained popularity at a staggering pace. The line between a cell

phones and Personal Digital Assistants (PDAs) is becoming blurry and these are not the

only devices with considerable wireless capability. Web services of all types are

becoming more widespread and handhelds are quickly taking advantage of the benefits.

However, these devices are limited in processing power, available memory, and battery

life. This use case is particularly focusing on devices that are limited to a code size of

64KB and a heap size of 230KB (M. Cokus & Percias-Geertsen, 2005a). These

constraints are especially profound as XML, which lies at the core of web services, has

a large memory footprint. Consequently, a faster serialization process that generates

smaller packets for transmission would greatly expand possibilities in this realm. The

quicker parsing and serialization process will help reduces battery consumption and the

smaller packets will enhance limited help reduce network capacity usage.

32

b. Military Information Interoperability
The US Department of Defense and its allies have developed into

enormous enterprises in which timely and accurate information exchange is absolutely

crucial. This is difficult as the data that traverses the enterprise as well as the elements

that create the data are extremely varied. Interoperability throughout the enterprise is

paramount and many Commercial Off the Shelf (COTS) systems are being utilized in

creating web services to meet that need (M. Cokus & Percias-Geertsen, 2005a). XML

provides an excellent solution as it can be used to represent data that is loosely coupled

and provides for backwards compatibility, but a binary encoding of XML is needed for

processing and networking efficiency. Backwards compatibility is an issue due to the

extensive testing that must be conducted on any new system, therefore, integration of

new technology is achieved piece meal throughout the enterprise usually over a

considerable amount of time (M. Cokus & Percias-Geertsen, 2005a). As a result, at any

one time, multiple versions of systems and software exist and each must maintain

interoperability with the other. Also, the military is not immune to the bandwidth issues

found in other test cases and may be most affected. This makes the prospect of a

binary XML solution all the more appealing for the military use case.

c. Sensor Processing and Communication
The need for more accurate intelligence data by both military and civilian

agencies has caused an increase in sensor architectures design (M. Cokus & Percias-

Geertsen, 2005a). These architectures range from isolated static sensors with limited

resources to mobile sensor arrays that dynamically interconnect to create networks.

Data flow also varies as some sensors may only relay a data feed, but many also

receive command and control instructions based on processed data reports. XML could

provide a solution for communication and reporting protocols since it enables

connections between dissimilar systems and can easily be put into human readable

forms for interpretation or editing. However, the networks that connect sensors are

often unreliable or lacking in available bandwidth (M. Cokus & Percias-Geertsen,

2005a). The sensors themselves could be battery powered and static sensors require

an extended duration of time to gather useful data. These concerns point towards a

33

binary XML encoding that could provide instructions to sensors and receive reports in

the smallest packet size possible. This minimizes bandwidth which, in turn, conserves

battery power for unattended systems. Finally, due to the security nature required from

some sensors, the ability to encrypt and decrypt without any additional overhead would

be a desired characteristic (M. Cokus & Percias-Geertsen, 2005a).

d. Extensible Messaging and Presence Protocol (XMPP) Instant
Messaging Compression

The Jabber instant messaging service is an increasingly popular tool that

is built on XMPP functionality. XMPP is a streaming XML protocol that provides instant

messaging, group chat, and other real-time functionality (M. Cokus & Percias-Geertsen,

2005a). XMPP uses a simple client-server architecture in which XML fragments, known

as stanzas, are exchanged to provide chat capability. A few of XMPP’s advantages are

flexibility and ease of use. The XML format allows additional protocols to be easily

added as well as providing human readability for debugging (M. Cokus & Percias-

Geertsen, 2005a). When stanzas arrive at the server for routing, they must be parsed

in order to determine the ID of the client and the appropriate server to which the

message needs to be forwarded. Even though the stanzas are small, high traffic

scenarios with hundreds of thousands of stanzas to be parsed add up to create a large

workload for XMPP servers (M. Cokus & Percias-Geertsen, 2005a). In addition,

stanzas also add up to use a large amount of bandwidth. As a result, a binary encoding

that reduces parsing times and serialized file sizes provides greater capacity and

efficiency to XMPP.

3. XML Binary Properties
a. Introduction
After the use cases were established, they were examined extensively

and the properties of binary encoding required by the use cases were recorded. Similar

properties were combined and a final list was compiled. In this way the specific

requirements for the encoding are established so that if the candidate solution contains

all the properties listed in Table 2, it should theoretically work for all the use cases.

34

Algorithmic Properties Generality
Processing Efficiency Human Language Neutral
Small Footprint Human Readable and Editable
Space Efficiency Integratable into XML Stack
 Localized Changes

Format Properties No Arbitrary Limits
Accelerated Sequential Access Platform Neutrality
Compactness Random Access
Content Type Management Robustness
Deltas Roundtrip Support
Directly Readable and Writable Schema Extensions and Deviations

Efficient Update
Schema Instance Change
Resilience

Embedding Support Self Contained
Encryptable Signable
Explicit Typing Specialized codecs
Extension Points Streamable
Format Version Identification Support for Error Correction
Fragmentable Transport Independence

Table 2. Desired algorithmic and format properties of a binary XML standard as

derived from use cases by the W3C (M. Cokus & Percias-Geertsen, 2005b)

b. Additional Considerations
A few qualities desired of the binary encoding were agreed upon but not

added to the properties list because of the difficulty in establishing an effective standard

of measure by which to judge candidate solutions (M. Cokus & Percias-Geertsen,

2005b). These qualities include forward compatibility, low implementation cost, royalty

free, and widespread adoption.

Forward compatibility is essential for the new format as data models are

very dynamic. It is the idea that the implementation must flexible enough to be able to

represent these new models through an augmentation of the standard (M. Cokus &

Percias-Geertsen, 2005b). Forward compatibility is much more difficult and requires

more careful planning than traditional backwards compatibility.

For the case of binary XML encoding, a natural solution to forward

compatibility presents itself. Any future binary format can be supported by simply

35

translating intermediate formats back into XML. This approach as been adopted by

XSBC and X3D, allowing current use of binary XML to proceed with confidence while

work on future solutions continues. XML has displayed excellent forward compatibility

as has changed very little while accompanying new data models.

Widespread adoption is another important consideration that is difficult to

quantify. The new format should be able to provide solutions to a number of

architectures and wide range of devices and not be pigeon-holed for a specific use.

This is important as it creates an underlying support structure for the standard (M.

Cokus & Percias-Geertsen, 2005b). Readily available support in turn aids in

widespread adoption and the cycle repeats itself. When a new format begins to gain

popularity various tools and resources begin to appear at an alarming rate, due in part,

to the global nature of the Internet and the technical interest and savvy of many of its

users. This helps provide a sense of legitimacy to the standard as it becomes well

understood and supported.

Additional factors that encourage widespread adoption are a low

implementation cost and a royalty free standard (M. Cokus & Percias-Geertsen, 2005b).

Developing applications that implement the new binary format should be a relatively

straightforward process. This entails a coding mechanism that does not require huge

amounts of time as this increases cost by having to contract out to programmers. As

XML already fulfills this requirement well, the code should seek to be XML compatible at

the processing level or close to it. This approach enables the new format to be

processed by current systems and thus lower the implementation cost. The last

consideration, but one not to be overlooked, is a standard that is royalty free. This is a

huge factor in encouraging widespread adoption as there is no cost for using the format

or developing tools that process it. A royalty free standard can also be endorsed by the

W3C which can bolster confidence in adopting the new standard (M. Cokus & Percias-

Geertsen, 2005b).

36

4. XML Binary Characterization
a. Definition of Binary XML
In order to avoid ambiguity and clearly light the path to a standard, a solid

definition must be constructed. Binary XML is defined as “a format which does not

conform to the XML specification yet maintains a well-defined, useful relationship with

XML.” (Goldman & Lenkov, 2005) The W3C further defines useful to mean “that

practical systems may take advantage of this relationship with little effort [such as] it

may be use to convert a file from XML to binary XML.” (Goldman & Lenkov, 2005) It is

important to understand that binary XML is not simply a compression algorithm, but an

entirely separate way to encode data that shares some of the same characteristics as

XML but is totally independent from it. If a standard is adopted, systems will not need to

convert from binary XML to pure XML in order to understand it, but will be able to

understand and manipulate the binary encoding itself.

b. Development of Minimum Requirements
It was recognized by the working group that the initial list of 38

requirements and additional considerations was much too large. Trying to satisfy this

considerably large number of requirements would certainly doom any prospective

format to failure (Goldman & Lenkov, 2005). While all the requirements were important,

it was agreed a measure of significance needed to be created to rank the requirements.

The following categories were subsequently created: must have, should have, and nice

to have. Each of the properties contained in every use case was sorted into one of

three categories. From this a list of must have properties was obtained. This process

only eliminated seven properties.

37

Start Does XML support
the property directly?

The Binary XML format
should directly support the

property.

No

Binary XML should work
with other

recommendations in the
XML stack.

Yes

XML Binary Property Decision Tree

Does XML support this
when combined with

other recommendations
in the XML stack?

Yes

The process should be
addressed by a general
approach that works for
both XML and Binary

XML.

Is it feasible for XML
to support this

property?
Yes

No

No

The property should be
directly supported by

Binary XML.

Figure 8. XML Binary property decision tree to determine which properties should

be directly supported and which are supported by associate technologies (Goldman &
Lenkov, 2005)

However, the working group also recognized that some of the properties

listed could be satisfied through other means and did not necessarily need to be an

intrinsic property of binary XML. The decision tree, shown in Figure 8, shows the

process through which each property was passed. The decision tree is designed to

differentiate between properties that should be directly supported by binary XML and

those that can be supported by coordination with other technologies in the XML stack

38

(Goldman & Lenkov, 2005). This ensures that binary XML maintains a close

relationship to XML so that future changes to the stack take binary XML into account as

well. The output of this process was a list of properties binary XML must support and a

list of properties that should be tackled by other technologies working together with

XML. The latter of the two lists was then further examined and the properties that

binary XML must not prevent from developing were selected for inclusion on the

minimum requirements list. These properties, seen in the right-most column in Table 3,

do not have to be supported by an implementation but should not be obstructed by

binary XML. An implementation should try to contain these properties, but they are not

required.

The must support requirements list shown below is then constructed from

properties that meet two criteria. They are a “must have” for at least one use case and

are needed to be directly supported as indicated by the decision tree. In addition, six

properties which did not meet the conditions stated above were kept as they are best

practices documented by the W3C and would become requirement for the

recommendation regardless (Goldman & Lenkov, 2005). Those are indicated by the

W3C column.

MUST Support W3C MUST NOT Prevent
Directly Readable and Writable Processing Efficiency
Transport Independence W3C Small Footprint
Compactness Widespread Adoption
Human Language Neutral W3C Space Efficiency
Platform Neutrality W3C Implementation Cost
Integratable into XML Stack W3C Forward Compatibility
Royalty Free W3C
Fragmentable
Streamable
Roundtrip Support
Generality
Schema Extensions and Deviations
Format Version Identifier
Content Type Management W3C
Self Contained

Table 3. Minimum requirements for binary XML Including those that are W3C best

practice standards (Goldman & Lenkov, 2005)

39

c. Conclusions
With these requirements in place, the working group discussed eight

current binary XML solutions to see how they matched the minimum requirements as

specified above. Each solution had a representative present to answer questions

concerning algorithms and functionality. The results were published anonymously so as

to prevent an implicit endorsement of one solution. Two of the solutions met all the

minimum requirements and two more solutions failed by not supporting two properties.

It is important to note that these solutions were developed before the requirements were

posted, so any requirements that are met are somewhat incidental.

With this encouraging data the working group made four conclusions

about binary XML. They concluded that binary XML is needed, it is feasible, it must be

produced by the W3C, and it must integrate with XML(Goldman & Lenkov, 2005).

The need for XML is shown clearly in the varied use cases that were

assembled from the technical community. These needs were not being met elsewhere

by a single format, but ad hoc solutions. Much care was taken to ensure that the

requirements placed on binary XML will meet the needs specified in the use cases.

After examining the eight existing solutions and seeing that two met the

minimum requirements with others following close behind, the group concluded that a

single solution is feasible—that the twenty-one minimum requirements decided upon

are not unreasonable (Goldman & Lenkov, 2005). The group was confident that, with

the requirements now published, additional solutions can be designed and developed to

meet the specification.

Finally, the working group felt that the W3C must be responsible for

standardizing the binary XML solution (Goldman & Lenkov, 2005). To avoid multiple

implementations gaining footholds of popularity in their respective areas of use, the

W3C must set an international standard. This will protect the interoperability of XML

itself as well as its integration into the XML stack. This insures that any future changes

made to the stack include binary XML in the consideration as well.

40

D. EFFICIENT XML INTERCHANGE
Although the normal process for a working group is to start at the beginning with

use cases and finish with a new standard, the process for determining binary XML is

being altered slightly. Instead of having one group perform all the work, it is being

divided into two groups, with the first being the Characterization Working Group. Now

that it has fulfilled its chartered purpose and produced its deliverables that group has

closed and a new group is being set up to review implementations, conduct testing, and

ultimately decide upon the standard. This group is being called the Efficient XML

Interchange (EXI) Working Group and the charter is currently being created.

The specifics of the charter for EXI are very important as they will direct the

group through the process of selecting a standard. Although there is some contention

now about exactly what the charter should specify, it is accepted that the work of the

EXI Working Group will be based upon the work performed by the previous working

group. The minimum requirements extracted from use cases will be examined and

used in conjunction with the measurement methodologies prescribed by the

Characterization Working Group. However, these only provide a baseline for examining

and testing solutions. Many other issues such as minimum performance criteria need to

be agreed upon before the testing begins. Vendors have already notified the W3C of

their work on potential candidates, but require the confidentiality of a Working Group to

disclose their solutions. As there are many major stakeholders involved with developing

a new standard, it is taking some time to complete the charter.

E. ANALYSIS OF XSBC VIA PRESCRIBED CHARACTERIZATION

1. Must Support Properties
The current implementation of XSBC currently fails to meet all of the “must

support” properties as outlined by the working group as seen in Table 4, but work is

underway to ensure it meets all requirements. Specifically, the fragmentable, schema

extensions and deviations, and format identifier properties are not met. The schema

extensions and deviation property fails due XSBC’s reliance on an XML schema

document. XSBC is inflexible on its stance pertaining to schema use. The specific .xsd

file must be co-located with an XML file in order for XSBC to serialize and deserialize

41

that file. The schema deviation property is included because it provides flexibility by

being able to encode files in which the user has no prior knowledge of their structure or

type. Future work is planned to free XSBC from such a strict reliance upon a schema.

In addition, format version identification is not difficult to implement, but at the time of

this writing it had not yet been incorporated. The fragmentable property can also be

added to XSBC in the future. Resources need to be available to do this, but the

modular design of XSBC allows implementations of additional functionality.

MUST Support Fulfills
Directly Readable and Writable X

Transport Independence X
Compactness X

Human Language Neutral X
Platform Neutrality X

Integratable into XML Stack X
Royalty Free X
Fragmentable Planned
Streamable X

Roundtrip Support X
Generality X

Schema Extensions and Deviations Planned
Format Version Identifier Planned

Content Type Management X
Self Contained X

Table 4. XSBC score table of W3C XBC MUST SUPPORT properties

2. Must not Prevent Properties
XSBC fulfills all the “must not prevent” requirements set forth by the working

group. While XSBC does emphasize the small footprint at the cost of processing

efficiency, it does not prevent that activity. As it is an open source implementation of

binary XML developed in Java, it most certainly does not prevent widespread adoption

or implementation cost. The code is free the Internet and Java code is portable, by

nature, to multiple operating systems.

42

MUST NOT PREVENT Fulfills
Processing Efficiency X

Small Footprint X
Widespread Adoption X

Space Efficiency X
Implementation Cost X
Forward Compatibility X

Table 5. XSBC score table of W3C XBC MUST NOT PREVENT properties

3. Conclusion
XSBC does not completely meet all the requirements set forth by the W3C.

However, it still contains capabilities to be explored while the EXI specification is

underway. XSBC contains all but four properties, which suggests it has utility in a

subset of the use cases. Utilizing a schema is the characteristic that caused XSBC to

fail to meet certain properties, but in a scenario where the data is consistently being

transmitted in a known format (e.g. tactical data links or X3D) using a schema is not

detrimental but an asset. Schemas provide a powerful integrity check for the received

documents and in this way provide a first layer of security. In these cases of operating

on data with a static format, XSBC provides a realistic solution. XSBC provides an

excellent testbed for further experimentation on EXI candidates

F. RECOMMENDED STRATEGIES FOR NATO AND U.S. DOD
Based on the positive outlook from the binary XML working group, the author

encourages both NATO and the DoD to actively track and participate in the W3C EXI

group. Many advantages for the military lie in the recommendation and successful

implementation of a binary XML format as seen from the use cases. While the EXI is in

a transitional period it would behoove the DoD to begin its own testing, evaluation, and

use of binary XML. XSBC and Fast Infoset are free open source implementations and

can be easily obtained. AgileDelta’s Efficient XML solution may also be obtained as

AgileDelta has performed excellent work for the DoD in this area already.

 While engaged in the EXI Working Group, it is recommend that the DoD and

NATO ensure forward compatibility for any binary XML solution considered. Practically,

43

this means that a compression archive be maintained for any binary compression

algorithms that could possibly be used in the future. In addition, it is recommended that

the DoD and NATO perform further comparison studies to compare effectiveness of

legacy customized binary protocols (e.g. LINK16, Distributive Interactive Simulation,

etc) with generalized binary compression such as that provided by Fast Infoset, XSBC,

or forthcoming EXI format. Although binary protocols are highly tuned and superior

compression may not be possible, nevertheless, general compression techniques that

provide comparable compression along with XML web services compatibility may well

prove to be a better long-term choice.

G. SUMMARY
This chapter covered how the properties for a standard binary XML solution were

established. It also inspected XSBC to see what properties are currently being met and

where improvements are needed.

44

THIS PAGE INTENTIONALLY LEFT BLANK

45

V. NATO REAL-TIME TACTICAL COMMUNICATIONS

A. INTRODUCTION
This chapter provides an overview of selected tactical data links used by NATO

as well as an overview of XML technology and how it can be used to further improve the

data links.

B. TACTICAL DATA LINKS
1. Introduction
Establishing good communications has always been an essential element of an

effective fighting force. The commander overseeing the operation must have the ability

to control and coordinate his forces to maximize their effectiveness through a unity of

effort. However, good lines of communication not only deliver information down the

chain of command but also feed information back up. In order to decide on the best

course of action, the commander needs to have excellent situational awareness which

includes information regarding both friendly and enemy forces (Howland, 2004). This

concept of operations applies not only to strategic level commanders, but also at the

tactical level, such as a combat pilot. While only a single individual a pilot’s

effectiveness is contingent upon his ability to maintain good situational awareness (SA)

which can be difficult due the high rate of change of his operating environment.

While voice communications can be used to maintain SA, the potential for

miscommunication exists, especially in a fast-paced high-stress combat environment.

In addition, voice communications are completely ineffective for transmission of highly

precise and dynamic data such as aircraft positions. With serious consequences

attached to actions taken in such a scenario, an unambiguous method of

communication is vital.

A digital data link provides many advantages over voice communications in

regard to this particular type of communication. First, sending digital text is much

simpler to implement and requires much less bandwidth than a full-duplex voice channel

(Howland, 2004). Second, the information can be continually and automatically updated

46

which is particularly useful for tracking aerial targets. Finally, digitalization of data also

allows for verification of information though an unambiguous format, forward error

correction, and encryption. This lays a solid foundation to build upon for reliable and

secure communications.

Organizations such as NATO also contain unique challenges as joint forces are

not only from varying services but also from different countries (Muller, 2003). Not only

are there differences in communication equipment, protocols, and standards, but the

end users may not even speak the same language. This only underscores a need for a

standardized unambiguous format and method for communication. The current family

of tactical data links was meant to be a solution for all of the afore-mentioned issues.

 United States NATO
LINK 1 N/A STANAG 5501
LINK 4 / TADIL-C MIL-STD 6004, MIL-STD 188-203-3 STANAG 5504
LINK 11 / TADIL-A MIL-STD 6011, MIL-STD 188-203-1A STANAG 5511
LINK 11B / TADIL-B MIL-STD 6011, MIL-STD 188-212 STANAG 5512
LINK 14 N/A STANAG 5514
LINK 16 / TADIL - J MIL-STD 6016 STANAG 5516

Table 6. United States military and NATO standards for tactical data links (Air Land
Sea Application Center, 2000)

NATO currently uses LINK 1, 4A, 4B, 11A, 11B, 14, and 16 for its tactical data

link needs with LINK 11B and LINK 16 are the most prevalent and bear the bulk of the

workload (Downs, 2005).

2. LINK 11
LINK 11 is one of the oldest yet employed tactical data links. It is still used by

several countries within NATO including the United States where it is known as TADIL-

A/B (Howland, 2004). TADIL-A, the older of the two versions, is based on 1960’s

technology and is used for airborne communications. It employs digital radio signals in

both the HF and UHF ranges. HF propagates a ground wave which allows for

communication out to ranges of 300 nautical miles while UHF limits users to Line of

47

Sight (LOS). This establishes a maximum UHF range of 150 nautical miles for

communications between a surface vessel and an aircraft (Downs, 2005).

a. TADIL-A
TADIL-A operates as a netted communication architecture by establishing

a simple polling system. Every unit can be classified as a Net Control Station (NCS) or

a Participating Unit (PU), however only one Net Control Station exists on a particular net

(Downs, 2005). The NCS is responsible for sequentially polling each PU within the net

and for managing the resources of that particular net. During a roll call procedure, the

NCS polls the PU’s in a particular order and only then can a PU transmit data to the

NCS. The NCS, with the updated data from the entire net, serves as the hub for the

network and is able to broadcast the data to all PU’s on the net. LINK 11 operates

generally at two data rates: 1364 bits per second (bps) or 2250 bps (Downs, 2005).

These data rates include error detection and correction bits, but its network capacity is

very small by current standards; the system is now almost thirty years old.

Perhaps the most vital function LINK 11 makes possible is the creation of

a Common Operational Picture (COP) (Downs, 2005). The NCS receives track data

from the sensors for each PU, compiles that data, and correlates the tracks. This

ensures that two tracks of a single contact are fused and prevents the creation of a

contact that does not actually exist. LINK 11 is also used for various command and

control functions to include transferring control of aircraft, maintaining aircraft status,

and issuing commands.

b. TADIL-B
TADIL-B is an upgraded version that of LINK 11 with basic changes in

architecture and increased data rates. TADIL-B is used primarily by ground units for

tracking and controlling air contacts. With the upgraded link, the designers have broken

away from the aging polling architecture and TADIL-B boasts a dedicated point-to-point

architecture. This also allows for full duplex sending and receiving. Along with these

48

improvements comes increased bandwidth. LINK 11B nominally operates at 1200 bps,

but has the ability to transmit at multiples of 1200 even past 4800 bps.

 Both LINK11 and LINK11B share the same message format. All the

information sent over the data links must be one of the fifty-three standard messages

defined in STANAG 5511 as the M series (Downs, 2005). This eliminates any

ambiguity in the message content as well as allows for automatic processing of the

messages. However, the actual binary readers and writers that convert the streaming

radio data into the messages are proprietary. This isolates the system as the data is

not in a common format which prevents it from being readily available to other systems.

3. LINK 16
LINK 16 does not stray far logically from the traditional idea of a tactical data link.

It exists as a communication system that provides real time command and control

capability. However, it offers a myriad of improvements over its predecessors as the

newest of the TADIL family and incorporates newer technology. One of the most

important improvements is the reduction in physical size of the module. This allows for

tactical users such as fighters to be connected via LINK16 and not just larger C2 aircraft

such as the E-8C Joint STARS (Pike, 2000).

The most significant architectural change is the removal of the NCS that was

present with LINK 11. A decentralized architecture is used by LINK 16 with multiple

users implementing time division multiple access (TDMA) schemes; meaning

information is broadcast to units where that information is relevant. All participating

units in a network are categorized into a Network Participation Group (NPG). Each

NPG is identified by its information needs or role within the battle space. The unit

coordinating real time surveillance does not need to receive the air traffic control vector

information as it is a waste of resources to do so. As a result, units only transmit data to

others within their NPG. This eliminates unnecessary network traffic as well as the

need for a central control node which is a considerable vulnerability that exists with

49

LINK11. Other improvements upon the existing TDL architecture include greater overall

throughput, electronic countermeasures resistance, an automatic relay system, and the

addition of secure voice channels.

Figure 9. LINK16 stacked net architecture showing the separation of nets into

logical communication groups (Downs, 2005)

LINK 16 operates in the UHF spectrum which provides more frequency

bandwidth than LINK 11. This provides additional raw spectrum for higher throughput,

but reduces the range of effective communications. To combat this limitation of UHF

frequencies, LINK 16 features an auto relay system for units that are beyond the line of

sight. Units that are within range receive the message and then forward it to those

unable to receive the original transmission (Pike, 2000). This decentralized architecture

is similar to having each unit act as an NCS.

LINK16 also further maximizes the frequencies available by implementing a

frequency hopping scheme. This has multiple benefits including an increase in

50

throughput, anti-jamming capability, and the ability to stack nets and create entirely

separate networks. A net is created by designating a specific frequency-hopping

pattern. Then the nets are assigned to various platform groups that require inter-

communication ability as displayed in Figure 9. This allows communication within the

net without interfering with other platforms assigned to other nets. As a result, platforms

on different nets can transmit during the same timeslot, eliminating interference, as they

are operating on different frequencies (Downs, 2005).

These multiple nets contained in a stack constitute a logical network. One can

easily switch between nets within the network, but to switch networks requires a re-

initialization of the physical LINK16 module which is much more involved than switching

nets. Switching nets in necessary as one can only belong to a single net at a time. This

provides a framework for organizing communications among users with a common

mission and providing security by separating networks (Downs, 2005).

The message format for LINK 16 is similar to that of fixed-length format found in

LINK11. NATO’s STANAG 5516 and the US MIL-STD-6016 define the messages as

the J series (Downs, 2005). Every J series message consists one or more 75 bit

“word”. There are three types of words: the initial word, extension word, and

continuation word (Downs, 2005). If a message with multiple words is sent, the words

must arrive in the aforementioned order. The number of words required for the message

is dependant upon content of the message. The most common combination is an initial

word followed by an extension word. The initial word is always required as it give the

basic information of the message as well as the number of extension and continuation

words that are to follow it. The extension word contains additional detailed information

that could not be contained in the initial and the continuation word contains amplifying

information when available.

C. NATO XML PROGRAM
NATO Consultation, Command and Control Agency (NC3A) is a technical

institution that seeks to provide NATO with the latest command and control technology.

NC3A, along with most major software developers, took notice as XML emerged onto

51

the market and rapidly gained popularity as it proved to be an excellent solution to many

data management problems. With the knowledge that NATO is a very complex and

data rich organization, NC3A recognized the value and advantages XML had to offer

especially in military message formats, semi-structured documents, and merging

heterogeneous databases (Muller, 2003).

Early on NATO realized the need for a common message format for

communication among the 19 member nations. Subsequently, the Allied Data

Publication No. 3 (AdatP-3) and the United States Message Text Format (USMTF) were

created (Muller, 2003). These messages are structured and are used for not only

tactical messages but every type of communication within a military structure. Needless

to say, this format, originally designed for teletypewriters, can be mapped to an XML

structure with relative ease.

NC3A also is considering the feasibility of using XML to markup the vast amounts

of information that flow in and out of NATO on a day to day basis (Muller, 2003). With

metadata embedded in every electronic document, the efficiency involved in searching,

sorting, and correlating data could greatly be improved. Similarly, NATO has access to

multiple databases from many different sources. Each database contains unique data

models and structure and interoperability among them is currently cumbersome.

However, a conceptually consistent XML schema can provide a common framework to

aid in this data exchange.

1. NC3A Workshop
As a result of the aforementioned potential applications of XML, NC3A held an

XML Workshop in November of 1999 in order to formally investigate the direction NATO

should take concerning XML (Muller, 2003). The workshop included military and civilian

experts. The workshop sought to discover potential uses for XML within NATO and

their associated organizational and financial benefits. In addition, the workshop focused

on the current state of military development of XML-enabled capabilities among NATO

nations in addition to the status of development in the civilian industry.

52

Those involved with the workshop concluded that XML is indeed an important

technology for NATO and its members and that early action is required in order to

prevent the benefits offered by XML to be muddied by independent and uncoordinated

development efforts. Specifically, recommendations were made to begin educating

decision makers within NATO of the potential XML offers while monitoring the affects

XML has on data management as it is implemented among the Nations. In addition, the

workshop proposed the founding of a NATO XML Registry and Repository Service to

act as a coordinating body for development (Muller, 2003). Finally, it was

recommended that NATO should provide a representative to international standards

organizations such as W3C and OASIS in an effort to help shape XML standards so

that the many military use cases will not be overlooked. In this way, the workshop

hopes to provide input into the standardization process and so shape the future of web

service technologies.

2. NIRIS
NIRIS first stood for the NATO Interoperable RASP Information System with

RASP meaning Recognized Air and Surface Picture (Howland, 2004). It has been

renamed to reflect its newest upgrade capabilities; Networked Interoperable Real-time

Information Services. This program is currently an example of the recommendations

made by the NC3A Workshop. What began as an ad hoc solution is now becoming

potentially a powerful C2 tool for NATO. This section details the creation and

functionality of NIRIS with a focus on XML integration.

NIRIS began as an ad hoc solution to a request made by Supreme Headquarters

Allied Powers Europe (SHAPE) during NATO’s involvement in Bosnia in 1994-

1995(Howland, 2004). The NATO strategic level commanders in Brussels wanted to be

able to view the LINK11 air track data occurring within theater. More specifically,

SHAPE wanted the tracks from each individual combined air operations centers

(CAOC) to be combined to create a common operating picture of the air operations.

NC3A fulfilled the designated requirements, but the solution required specialized

equipment and was far from extensible.

53

NIRIS continued to be a useful tool and as a result a second version of NIRIS

was developed in 1999. However, the entire program was re-coded from the ground up

in Java retaining only a few segments of the original C code. The retooling of NIRIS

provided improvements to include the ability to record and replay data as well as an API

to allow other programs to access and use the data stored by NIRIS.

It was not until 2004, though, that it was decided to introduce XML support and

capability into NIRIS (Howland, 2004). This third version was fueled by the desire to

shift NIRIS from its current stovepipe paradigm into a web service architecture.

Currently, version 3 contains three important modules that provide the principal

functionality of NIRIS. These modules are named TITO, TIXO, and XITO.

a. TITO
TITO serves multiple functions and as a result stands for TDL-in, tracks

out; or tracks-in; TDL-out; or TDL-in, TDL-out. This module decodes any LINK1,

LINK11, or LINK16 message and provides an API for other programs to be able to

access the data contained in the messages as well as generate their own. TITO can

also translate among the different LINK formats according to the NATO Standardization

Agreements (STANAG) and then forward the message. The process of coding TITO to

appropriately parse the 3000 different TDL messages per the STANAG’s was

accomplished by a new state-of-the-art code generator (Howland, 2004). This process

was so precise and thorough that it discovered ambiguities among the STANAG’s which

are currently being resolved.

b. TIXO
TIXO which stands for tracks-in, XML-out is a module that adds

considerable flexibility and power into NIRIS by providing a core requirement for web

services: the data in an XML format. Currently, TIXO takes the track data from TITO

and then placing data into an XML format. Once this is accomplished the data is

available for the use by web applications. Currently, TIXO supports three data formats

in XML: NVG, XLTF, and TDL-XML (Howland, 2004). The NATO Vector Graphic (NVG)

54

format is a specialized standard used in creating military map overlays. In generating

an NVG message, TIXO extracts the position, velocity, and track type from a TDL

message via TITO and ads information so that the correct MIL-STD 2525B symbol is

associated with the track(Howland, 2004). The Extensible Light Track Format (XLTF) is

similar to NVG in that it extracts information deemed important from a TDL message,

but differs in that it is extensible and uses can add optional information about the track

for specialized purposes. The TDL-XML format is direct encoding of the original TDL

message. The advantage of this format is that it provides the same data fields as the

original track information.

Figure 10. LINK16 round trip demonstration via the NIRIS software suite along with

providing web services of LINK16 data

c. XITO
XITO is the newest module in NIRIS and provides a round trip capability

into the NIRIS bundle as shown in Figure 10. XITO takes an XML encoded message

and translates it into the original TDL encoding to be transmitted back out to tactical

55

users. In this way NIRIS will allow legacy equipment to interact and take advantage of

emerging web services. The process of NIRIS subscribing to a service, performing the

conversion into a traditional TDL format, and forwarding the message, will be

completely transparent to the legacy link terminal. Ideally, all the TDL’s in the future will

operate using come variation of XML encoding, but until then, XITO will serve as the

gateway between legacy TDL’s and a service oriented architecture. Figure 11 shows

the roles NIRIS fills in a real-time data web service.

Figure 11. Web service architecture needs currently met by NIRIS and the future

needs that NIRIS will meet (Howland, 2004)

d. Experimentation
With all the internal modules built into NIRIS, experiments have been

conducted to test module functionality within the context of running an actual web

service. The most recent experiments have focused on providing web services coupled

with the TIXO module. Two experiments were conducted which required the creation of

two new web services that run on the NIRIS framework: TIXO-TIDE and TIXO-STGP

Current NIRIS
functionality

NIRIS functionality
in development

56

(Howland, 2004). The TIXO-TIDE web service functionality is included in the latter

experiment which also contains improvements, but is included to show the evolution of

products.

(1) TIXO-TIDE. The first of two experiments was to provide a web

interface for an existing tool found in the TIDE WISE framework that queried LINK16

data and displayed it on a geographic overlay. The resulting web service organic to

NIRIS was named TIXO-TIDE and provided LINK16 data to TIDE WISE in the NVG

format (Howland, 2004). . While NIRIS is able to connect to active LINK16 nets and

provide data in real time, for this experiment two hours worth of recorded tracks were

played back to simulate live interaction. The goal of the experiment was to create a

web service client that received NVG messages unaware of the underlying LINK16

message specification. Figure 12 shows the TIDE WISE client displaying the data.

Figure 12. A TIDE WISE client running in a browser displaying NVG data from a
recorded LINK16 feed (Howland, 2004)

57

While lacking in the detail that will eventually be required by tactical

users, the TIDE WISE client successfully demonstrated the feasibility of creating a thin

client that relies on a web service to act as a gateway for a TDL as well as performing

any necessary conversions.

(2) TIXO-STGP. The second experiment to be discussed is the

implementation of the existing STGP system (Shared Tactical Ground Picture) into a

web service. STGP is a current program created to enable NATO nations to create a

common operating picture from multinational data sources. This experiment involved

observing the difficulty in adding an STGP interface into NIRIS to provide STGP client

access to the track data store (Howland, 2004). The web service was designed to

serve data in the XLTF format to clients on either a query based or subscriber based

system. The query based client receives the full TIXO data output per each request

while the subscriber initially receives all requested data and then is supplied with

updates. The construction of the TIXO-STGP web service was accomplished relatively

easily in a manner of weeks and a demonstration of the capability was subsequently

executed in January of 2005 under the title Shared Tactical Group Picture Demo 6

(Howland, 2004). STGP’s core services (security, discover, etc) were running on

servers located in the United States, while other services were located physically in

United Kingdom, Norway, and the Netherlands. NC3A, located in The Hague, ran client

applications that utilized each of these services via a secret VPN through the Internet.

This is shown below in Figure 13.

58

Figure 13. TIXO-STGP experiment set-up showing connectivity of global web
services through a SECRET VPN

Not only was this an excellent display of world wide networking, but

it was also the first time a secret VPN had been used to securely tunnel through the

Internet (Howland, 2004).

Four STGP clients developed in the UK, US, Norway, and by NC3A

were tested. The LINK16 air track data gathered from NIRIS along with data from other

sources can be see as dots located on British Decision Desktop tool displayed in Figure

14 (Howland, 2004). The other dots include data garnered from the other web services.

This exercise showed the flexibility in NIRIS to accommodate other web services as well

as include additional services of its own. It also served to demonstrate the flexibility and

robust capabilities offered by a service-oriented architecture. The process of

coordinating the exact addressing and routing issues normally required for establishing

a such a network were handled automatically through search and discovery services

(Howland, 2004).

59

Figure 14. Decision desktop display displaying data pulled from international web

services in the UK and Norway (Howland, 2004)

D. XSBC ADAPTATION TO NIRIS
1. Motivations
NC3A has been quite successful in the development of the NIRIS suite, but has

sought to improve the performance even more. It was recognized XML’s major

drawback in this context is its verbose nature as the memory needed to represent text is

most often larger than its binary equivalent. This is particularly an issue when

transmitting the data over IP networks. Future advancement of TDL might even involve

replacing current TDL messages with XML equivalents to be transmitted to participating

platforms. Sending smaller messages allows for reduced latency across the network as

well as maximizing limited network capacity. Due to design of many TDL’s to be ECM-

resistant, the overall usage of available bandwidth suffers tremendously as compared to

the increased data transfer rates which cable internet users are accustomed. In

response to this, NC3A began seeking binary XML solutions. A possible solution was

considered in using a dynamic schema coupled with the Abstract Syntax Notation One

60

(ASN.1) encoding algorithm, but this proved to be far more complex than anticipated.

Representatives from NC3A first learned of the binary XML work performed by the

MOVES Institute of NPS during an initial meeting at the Interservice/Industry Training,

Simulation & Education Conference of 2004. NC3A then contacted NPS MOVES the

following year with a request to collaborate on XSBC’s implementation into NIRIS.

2. Implementation
 Since the TIXO module inside NIRIS outputs an XML document this was deemed

the logical place to add XSBC’s capability. The TDL messages wrapped in XML, which

are defined by a specialized schema, are received by XSBC from the TIXO module and

are subsequently encoded and serialized for transmission across the network. Upon

delivery, the NIRIS architecture deserializes the stream via the XSBC deserializer. At

this point the data is completely abstracted from XSBC and NIRIS operates without any

knowledge of the binary encoding. Hence, NIRIS can forward the data to XML enabled

web services or to the XITO module for output to legacy displays requiring TDL data. In

this way XSBC integrates easily into NIRIS with minimal intrusiveness. This is illustrated

in Figure 15.

Figure 15. XSBC integration into NIRIS showing a mandatory TIXO interface and

optional XITO Interface. Also shown is the binary format’s transparency to the user

61

a. Issues Discovered
The integration of XSBC into NIRIS was performed fairly easily as both

programs are written completely in Java. However, a few issues arose exposing current

limitations in XSBC. First, it was discovered that XSBC is currently designed to operate

with a single namespace referencing a single schema. This became readily apparent

during testing as the as Link 16 J-series XML messages containing references multiple

namespaces. This characteristic was duly noted and then, as a work-around, an XLST

document was created and utilized to strip away the multiple namespaces references

from the test messages. It was also discovered that the degree symbol “º” used in

latitude and longitude position data resolved to “?” in the deserialized XML file. A

similar issue involved the double quotation mark resolving to “"”. It was discovered

that the “"” string actually follows an obscure XML convention due to lack of

standardization in recognizing UTF-8 special characters. Both of these issues can be

corrected by coding the exact UTF-8 hexadecimal values representing these special

characters in place of the actual special character in the original or generated XML

document, or using the simpler text-based character-entity substitutions such as

“°” for the “º” symbol (Raggett, Le Hors, & Jacobs, 1999).

Despite the issues mentioned above, XSBC was integrated successfully

and tested using recorded LINK16 test data. However, a few items are discussed as

future work. The most obvious need is a retooling of XSBC to accommodate multiple

namespaces. Until then, XSBC cannot effectively be incorporated into NIRIS as the

bulk of the message traffic contains references to multiple namespaces. The other work

item of special character resolution is of lesser concern but provides improved efficiency

of the TIXO-XSBC interface. Currently, TIXO’s output product is XML in the form of a

DOM tree. XSBC is not currently able to serialize a DOM tree and as a result, code had

to be written to make JDOM call to translate TIXO’s output DOM into an actual XML file.

Implementing a StAX interface into TIXO would increase efficiency as it is a streaming

interface and requires considerably less memory than DOM. Future work in measuring

performance needs to examine data binding as well as serialization/deserialization to

network streams and files.

62

E. SUMMARY
This chapter describes the steps NC3A has taken towards producing a web

service oriented architecture through the conversion of tactical data link into an XML

format. It also examines some of the experiments conducted by NC3A as well as

documenting initial NPS integration of XSBC into the architecture.

63

VI. EXPERIMENTS, DATA COLLECTION AND ANALYSIS

A. INTRODUCTION
This chapter gives specific data on the compression and parsing performance of

XSBC and Fast Infoset. GZIP is also used as a follow-on for added compression and

those results are shown as well. An analysis of the performance characteristics is also

given.

B. BACKGROUND
The original algorithm for XSBC was primarily developed by Don McGregor and

Don Brutzman and documented in 2003 by Ekrim Serin under the name of Cross

Schema Format Protocol (XSFP). Serin’s work contained useful data showing the time

to generate and serialize protocol datagram units for the purpose of supporting

simulations in networked virtual environments. The thesis also showed the utility of

using XSBC in compressing X3D documents. However, due to ongoing development, a

systematic approach to measuring the exact performance characteristics of XSBC had

not been conducted. As XSBC is a candidate not only for integration into NATO but

also as a W3C binary XML solution, its performance profile needs to be known.

C. OVERVIEW
Since binary XML is designed to alleviate network capacity limitations, one of the

most important aspects of XSBC to examine is its compression performance. Sending

smaller sized files over the network mean the file as a whole is received more quickly

which frees up network resources so that more packets can be sent to maximize

efficiency. Related to bandwidth is network latency, or the time it takes for a packet to

traverse the network.

Another factor to consider is the amount of time it takes for XSBC to parse and

serialize an XML file before passing it off to be streamed across the network. This is

important for cases that involve real time or near real time data transfer.

64

D. METHODOLOGY
Serin’s original functioning java code was given to Yumetech, an application

development company, for modularization and to bringing the code up to industry

standards for design. This code is available online via CVS (see appendix C for

details). Packaged along with the source are simple example applications to

demonstrate some example uses of XSBC as well to demonstrate how to implement it.

One of these applications is the comparison panel covered in the previous chapter.

This tool was used to gather parsing and compression data on eighteen different XML

files of steadily increasing size.

This was done to observe the performance on varying file sizes. The same data

was also gathered on the same files, but Fast Infoset was used in lieu of XSBC. For

both encodings, non-lossy compression was used.

Latency, another important metric, is related to bandwidth, is. It can be

calculated with a known file size and bandwidth as seen in Figure 16.

Figure 16. Latency equation with known file size and bandwidth

The latency of the entire system can be approximated by adding the network

latency to the parsing and deserialization times. However, the best way to measure

system latency is to actually serialize an XML file, send it across a network, deserialize

it, and measure the overall change in time for the process. Using the sample

applications packaged with XSBC as a reference, simple client and server applications

were constructed to take such measurements. The code is given in Appendix C. While

the theoretical values can be calculated, this application is a useful tool for those trying

to meet certain performance goals. One can load an arbitrary number of test files into

the appropriate directory, and the server will serialize and send the files over the

65

network to the client where latency, parsing, and deserialization times are gathered

placed into three separate files. One can then examine the data to see if the goals set

for the network or test files are met.

E. EXPERIMENT
The Comparison Panel code was downloaded, compiled, and tested on a laptop

running the Windows XP Professional operating system, with a Pentium4 2.0 GHz

processor, and 512 MB of RAM. This was the machine used for all the tests.

Kilobytes File Name Megabytes File Name
1 simple-inherit.xml 1.0 uuvmissionOutput7.xml
2 espdu.xml 1.5 uuvmissionOutput6.xml
3 auvmissionOutput00.xml 2.0 uuvmissionOutput4.xml
4 auvmissionOutput01.xml 2.5 uuvmissionOutput3.xml
5 auvmissionOutput02.xml 3.0 uuvmissionOutput2.xml
6 auvmissionOutput03.xml 3.5 uuvmissionOutput1.xml
7 auvmissionOutput04.xml
8 auvmissionOutput05.xml
9 auvmissionOutput06.xml

10 auvmissionOutput07.xml
20 uuvmissionOutput17.xml
30 uuvmissionOutput16.xml
40 uuvmissionOutput15.xml
50 uuvmissionOutput14.xml

100 uuvmissionOutput13.xml
200 uuvmissionOutput12.xml
300 uuvmissionOutput11.xml
400 uuvmissionOutput10.xml
500 uuvmissionOutput9.xml
550 uuvmissionOutput8.xml

Table 7. Approximate sizes of files used in XSBC and Fast Infoset compression

tests to show performance over a range of file sizes

Table 7 shows the approximate sizes of the eighteen test files. For each file the

parse time was recorded as well as the file size with only GZIP used and then the file

size of the binary encoding plus GZIP.

66

XSBC and Fast Infoset Compression Comparison for Widely Varying File Sizes

0

200

400

600

800

1000

1200

0.0 500.0 1000.0 1500.0 2000.0 2500.0 3000.0 3500.0
Pre-Compression File Size (KB)

Po
st

 C
om

pr
es

si
on

 F
ile

 S
iz

e
(K

B
) XSBC

Fast Infoset
Fast Infoset + GZIP
XSBC + GZIP

Figure 17. XSBC and Fast Infoset compression comparison

Figures 17 and 18 show the performance of all four variations with 17 giving a

close-up on files smaller than 10 KB. As one might expect, as the size of the file

increases so does the size of the compressed version. The slope of the line indicates

the effectiveness of the compression. A lower slope signifies a better compression

algorithm. Also, note that the slope of the each line is nearly constant. This shows that

the compression ratios are relatively consistent among varying file sizes.

XSBC and Fast Infoset Compression Comparison <10KB Files

0

0.5

1

1.5

2

2.5

3

3.5

0.7 2.1 3.1 4.2 5.1 6.2 7.2 8.3 9.2 10.2

File Size (KB)

Po
st

 C
om

pr
es

si
on

 F
ile

 S
iz

e
(K

B
)

XSBC
Fast Infoset
Fast Infoset + GZIP
XSBC + GZIP

Figure 18. XSBC and Fast Infoset compression comparison for files less than 10 KB

67

Compression Ratio for Varying File Sizes

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

11
.8

21
.8

31
.2

43
.3

53
.1

10
5.6

20
5.4

29
7.3

41
7.6

50
7.4

54
2.9

10
56

.0

15
29

.0

18
06

.0

20
79

.0

24
23

.0

29
78

.0

35
13

.0

File Size (kB)

%
 o

f O
rig

in
al

 F
ile

 S
iz

e

XSBC + GZIP
Fast Infoset + GZIP
GZIP

Figure 19. Compression ratio comparison for encodings with GZIP

Figure 19 shows the compression ratio for each of the file sizes, but only for

GZIP and the encodings with GZIP added. Figure 20 shows the compression for files

less than 10 KB. This allows one to determine which file sizes are capable of maximum

compression. XSBC with GZIP is typically able to produce the smallest file size.

Compression Comparison for Files < 10 KB

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

File Size (KB)

%
 o

f C
om

pr
es

si
on

XSBC + GZIP
Fast Infoset + GZIP
GZIP

Figure 20. Compression ratio comparison for encodings with GZIP for files less than

10KB

68

Parse Times for Varying File Sizes

0

2

4

6

8

10

12

14

16

18

20

11
.8

21
.8

31
.2

43
.3

53
.1

10
5.6

20
5.4

29
7.3

41
7.6

50
7.4

54
2.9

10
56

.0

15
29

.0

18
06

.0

20
79

.0

24
23

.0

29
78

.0

35
13

.0

File Size (kB)

Ti
m

e
(s

ec
)

GZIP
FastInfoset
Fast Infoset + GZIP
XSBC
XSBC + GZIP

Figure 21. Parse Times for XSBC, Fast Infoset, and GZIP Combinations

The parsing times for every combination are shown here in Figures 21 and 22 with

GZIP so efficiency it is hardly visible. Again, as one would expect, these charts show

that larger files naturally incur a high computing cost in parse time.

XSBC and Fast Infoset Parse Times for < 10KB Files

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

1 2 3 4 5 6 7 8 9 10

File Size (KB)

Ti
m

e
(s

ec
)

GZIP
Fast Infoset
Fast Infoset + GZIP
XSBC
XSBC + GZIP

Figure 22. Parse Times for XSBC, Fast Infoset and GZIP Combinations for Files

Less than 10 KB

69

F. ANALYSIS
1. Compression Performance
Examining Figures 16 and 17 reveal that a difference in compression is

discernable between XSBC and Fast Infoset, but once GZIP is applied that difference is

minimized. This is true for files larger than 10 KB. For files smaller than 10 KB, XSBC

with GZIP clearly produces the greatest compression as seen in figures 17 and 19.

Without GZIP, XSBC provides better compression than Fast Infoset on files as

large as 500 KB. Interestingly, Figure 18 shows that this file size is also provided the

best compression resulting in a file 6% of its original size or a 96% bandwidth gain.

Figure 19 reveals that when compression is applied to files 3-5 KB) XSBC with GZIP

achieves 10-15% more compression than Fast Infoset. These are the sizes of the

sample LINK16 XML files received from NC3A (see Appendix B). If file size is one’s

primary concern then XSBC with GZIP provides the best option especially for

compressing files less than half of one megabyte.

2. Parse Time
The compression time for GZIP for a 3.5 MB sized file is 300 ms which is a

fraction of the 18 seconds taken by XSBC and even the 6 seconds of Fast Infoset.

GZIP is undeniably optimized for speed, making it the best solution for those seeking to

reduce processing time on the server. However, the cost is counted in the compression

as the file resulting from GZIP only is always 2% larger when not coupled with XSBC.

From Figure 21 it is clear to see that Fast Infoset’s strength is its ability to parse

larger files more quickly than XSBC. XSBC slows down more than Fast Infoset when

parsing files larger than 300 KB. Between the two implementations, Fast Infoset is the

solution of choice for files 1.5 MB or larger. However, using Fast Infoset over XSBC for

files 300 KB and larger is largely dependent upon whether parsing speed or

compression takes priority.

70

G. SUMMARY
For comparison among three algorithms, this chapter showed that XSBC coupled

with GZIP provides superior compression performance on files smaller than 500 KB.

However, it also showed that Fast Infoset maintains more consistent parsing times while

parsing times for the unoptimized XSBC code begin to grow rapidly with file size.

71

VII. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS
XML is a technology that, with its current track record, will continue to evolve and

play a vital role in the future of data processing and transfer systems. As shown from

the Binary XML Workshop a binary XML solution is needed. XML has become

synonymous with web services and the large memory footprint that accompanies XML

is a tremendous hindrance to integrating efficient web services. Not only is efficiency

needed to enhance current services, but it could open the door for the widespread use

of services by mobile devices.

The need for binary XML is valid as it covers a range of use cases from civilian to

military and from data transfer to 3D rendering. A solution is definitely needed. The

Binary XML Characterization Working Group determined that a solution that meets the

foundational needs of the uses cases is possible. This solution will not be the silver

bullet to solve all networking and memory issues, but provides a workable effective

solution for most use cases. As the W3C is beginning to form the EXI working group to

determine a standard, the US DoD and NATO should take a considerable interest in

being involved with the process of choosing and testing candidates. With DoD and

NATO supporting massive enterprise applications, a solution with tradeoffs that favor

the military use case would provide enormous operational dividends.

In the meanwhile, it was shown that little additional work is needed for XSBC to

integrate into NATO’s TDL web service module NIRIS. As shown by the compression

ratios, XSBC with GZIP provides the best performance between XSBC and Fast Infoset

with files smaller than 500 kb. While XSBC lags slightly in parsing times for files smaller

than 500 kb, the additional compression over Fast Infoset is worthwhile as computing

power is plentiful for NIRIS and the data is not time critical down to a fraction of a

second.

However, if N3CA is seeking an enterprise wide binary XML solution, the

consistent compression of Fast Infoset and reduced parsing time as compared to XSBC

makes it a more viable solution. This is especially true in dealing with the transfer of

72

larger files. In addition, Fast Infoset is better suited to a wider range of uses as it does

not rely on a schema. This allows the encoding of an XML document without prior

knowledge of its structure and content.

B. RECOMMENDATIONS FOR FUTURE WORK
 Enabling XSBC to handle multiple namespace references would allow full

integration into the NIRIS architecture and be a great benefit to NC3A. In addition,

XSBC could be optimized for the specific link data based on the types that are to be

compressed. An implementation needs to know, for instance, the number of significant

digits for the required granularity. With this knowledge, XSBC can be augmented to

reduce size of the data, before overall compression, by employing geometric

compression techniques on that data.

 XSBC currently can compress any well-formed XML document accompanied by

a schema. Some XML related technologies however, contain capabilities that XML

Schema is not sufficiently rich to model. One such example is XLST a language used

to transform XML documents into other forms of XML. Using the XML Schema

specification from W3C, one cannot write a schema that achieves 100% compliance

with the XLST language. However, a pseudo-schema could be created that models

XLST well enough to allow satisfactory XSBC compression. This technique can be

applied to any other XML technologies in order to take advantage of the benefits offered

by XSBC. Additional applications might include using a schema to encode and

compress other schemas. This recursive technique can be used to compress large

schema documents like the W3C Schema and the X3D schema.

 Future work could also include the examination of possible civil uses of binary

XML. The FAA could investigate the advantages of the air traffic control systems

utilizing XML to provide a more comprehensive view of the air space similar to a military

COP. In addition, in the event of an emergency where voice communications are non-

functioning, the air traffic controllers could send vectoring information to the aircraft in a

binary XML format to easily be interpreted and displayed for the pilots. Other possible

civilian use might include integrating communications of emergency response

73

organizations. This means interoperability on the local and state level. As evidenced

by the recent hurricane Katrina and Rita recovery efforts, having the fire and police

departments sharing information along with ambulance drivers and medical helicopter

pilots could lead to improvements in situational awareness and promote overall

efficiency. On a larger level, during times of crisis (e.g. terrorist attacks, natural

disasters, etc) local city authorities need a means of rapid communication and

coordination with state officials. State authorities seeking to manage FEMA, Red Cross,

and National Guard assets would also benefit from a fluid communication mechanism to

ensure that time sensitive needs are not overlooked. Binary XML will also aid in other

command and control functions.

74

THIS PAGE INTENTIONALLY LEFT BLANK

75

APPENDIX A. SOURCE CODE AVAILABILITY

XSBC is open source meaning the Java code is currently available on the

Internet for download and use without financial restrictions. It is found at

Sourceforge.net (http://cvs.sourceforge.net/viewcvs.py/xmsf/) which is a forum for open

source development where code can be downloaded, altered, and then uploaded again

by authorized users. Anonymous download of this source code is supported and can

be used to obtain XSBC.

Sourceforge.net uses an application called Concurrent Versioning System (CVS).

This technology allows for multiple developers to be using and improving code

simultaneously. CVS then collaborates and de-conflicts changes so that all the added

functionally is present. This prevents programmers from overwriting or hindering one

another’s work.

CVS capability is integrated into netBeans, an open source Java IDE, and can be

invoked from netBeans, or from a simple open source application like WinCvs, which

can be downloaded for free at http://www.wincvs.org. Once WinCvs is installed,

instruction for anonymous download of XSBC can be found here at

http://sourceforge.net/cvs/?group_id=86243. One only needs to replace “modulename”

with “XSBC” in the example commands and then execute them. In order to be involved

with the development process and be able to add functionality and upload changes,

please contact the MOVES Institute.

76

THIS PAGE INTENTIONALLY LEFT BLANK

77

APPENDIX B. EXPLANATION OF SIMPLE EXPERIMENT AND
SOURCE CODE

A. MOTIVATION
The SimpleMain program began as a way to duplicate the tests performed at

NC3A in which LINK16 J-series messages were serialized via XSBC, then sent across

the network using NIRIS and then deserialized on the other side. Due to time

constraints, the focus of the work was on successfully integrating XSBC into NIRIS and

an effective means of capturing basic network performance metrics of XSBC was

(rightfully so) a lower priority. As a result, the author and Terry Norbraten sought to

reproduce a simplified version of the NC3A test in order to serve as a live demo tool, as

well as a way to provide a testbed to see if XSBC can meet specified network

requirements. This tool is ideally suited for testing to see if XSBC can effectively

serialize X number of files and send them across the network of Y bandwidth in Z

number of seconds.

B. DESCRIPTION

The SimpleMain program consists of three Java files: SimpleMain, SimpleServer,

and SimpleClient.

1. SimpleMain
SimpleMain just provides a main class from which to launch either the server or

client. If the argument ‘server’ is applied when running SimpleMain then the

SimpleServer is run and begins listening on port 4040. The SimpleClient is run by

applying the arguments ‘client’ and ‘x.x.x.x’ where the latter is the IP address of the

server. If no IP address is supplied then a default loopback address is used.

2. SimpleClient
SimpleClient, when instantiated, stores all the files in the specified directory

(currently hard coded as C:/xsbc/examples/NC3ABinXml) into a file array. Then a for-

loop takes each file and creates an instance of XsbcSerializer which makes calls to

78

serialize the file and stream it via Transmission Control Protocol (TCP) across the

network. XsbcSerializer is incorporated in the standard XSBC jar file, but we modified it

so it injects a timestamp directly after opening the output stream as well as using time

stamps to measure the time to serialize the file. SimpleClient then uses a ‘get’ method

we added to capture the serialization times for each file. It then creates a text file

containing each flile’s serialization time as a new line for easy portability into a

spreadsheet for analysis.

SimpleClient creates a text file locally named “serial.txt” to record the results of

the serialization times.

3. SimpleServer
SimpleServer, when instantiated, opens a socket on port 4040 and then enters a

for-loop. Currently, the for-loop is hard coded for 960 iterations as that was the exact

number of test files, but that is easily changed. For each iteration in the loop, an

instance of an XsbcTransaction thread is created. This class is also found in the XSBC

jar, but again we have modified it. It simply receives a TCP stream of compressed

XSBC documents and de-serializes them back into *.xml files. Our modifications

include the addition of a cubbyhole class and timestamps to measure latency and

Deserialization time. The first eight bytes of each file received from XsbcSerializer

contains the timestamp we inserted into the stream. This is stripped out and compared

with the current time to calculate latency. Deserialization time is calculated by taking

timestamps before and after the deserialization method is called.

The cubbyhole class is vital in extracting the information from each file as it

synchronizes with the threads and extracts the information before the threads terminate.

Before implementing the cubbyhole technique, the SimpleServer was unable to access

any of the timestamps to calculate latency as the threads within it spawned and died

before it could extract the information. The code was modified from Sun’s open source

tutorial (http://java.sun.com/docs/books/tutorial/essential/threads/).

SimpleServer creates two files locally named “deserial.txt” and “latency.txt” to

record their respective metrics.

79

C. DATA SAMPLES
Figures 19 and 20 show the latency data from two sample runs of the

SimpleMain: one with two machines connected into the same hub on a wired LAN and

the other with the two same machines connecting wirelessly into the LAN. The sample

data was collected by serializing 960 J-series LINK16 messages received from NC3A.

Each file was 3-5kb in size. The latency data was collected from the “latency.txt” files

created after each run and imported in a spreadsheet for display.

Wired LAN Latency using XSBC

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700 800 900

File ID Number

Ti
m

e
(m

se
c)

Figure 23. Network latency of wired LAN using XSBC

80

Wireless LAN Latency using XSBC

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700 800 900

File ID Number

Ti
m

e
(m

se
c)

Figure 24. Network latency of a wireless connection to the LAN using XSBC

81

D. SOURCE CODE
1. SimpleMain.java

/*
 * SimpleMain.java
 *
 * Created on August 24, 2005, 4:25 PM
 *
 * To change this template, choose Tools | Options and locate the template under
 * the Source Creation and Management node. Right-click the template and choose
 * Open. You can then make changes to the template in the Source Editor.
 *
 * Description: This class serves as a common launching point for both the
 * SimpleClient and SimpleServer via command line. If SimpleMain is run with
 * the argument 'server' then SimpleServer begins listening on port 4040. If
 * SimpleMain is run with the argument 'client' it begins the client on
 * 4040 with the default address being a loopback. However one can specify
 * an IP address as a second argument.
 */

package matt.bayer.xsbc.project;

import cubbyhole.CubbyHole;

/**
 *
 * @author mebayer
 */
public class SimpleMain {

 public CubbyHole c;
 /** Creates a new instance of SimpleMain */
 public SimpleMain() {

 c = new CubbyHole();
 SimpleServer ss = new SimpleServer(c);
 SimpleClient sc = new SimpleClient("127.0.0.1");
 ss.start();
 sc.main();

 }

 public SimpleMain(String args, String address) {

 if (args.equals("server"))
 {
 c = new CubbyHole();
 SimpleServer ss = new SimpleServer(c);
 ss.start();
 }
 else if (args.equals("client"))
 {
 SimpleClient sc = new SimpleClient(address);
 sc.main();
 }

 } // end SimpleMain(String args)

82

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 // TODO code application logic here
 if (args.length == 0){
 new SimpleMain();
 } else if (args[0].equals("server")){
 new SimpleMain(args[0], "");
 } else if (args[0].equals("client")){
 new SimpleMain(args[0], args[1]);
 } else{
 System.out.println("Usage: specify as server or client");
 }
 }

}

2. SimpleClient.java

/* Program:
 *
 * Author: Matt Bayer, NPS
 * Modifier:
 *
 * Created on: August 19, 2005, 12:46 PM
 * Modified on:
 *
 * File: SimpleClient.java
 *
 * Compiler: netBeans IDE 4.1 (External), j2sdk1.4.2_08
 * O/S: Windows XP Home Ed. (SP2)
 *
 * Description:
 *
 * Information: Using xsbc-0.92 created by Alan Hudson of Yumetech
 * Inc. An Java open source API.
 */

/***
 * Web3d.org Copyright (c) 2004
 * Java Source
 *
 * This source is licensed under the GNU LGPL v2.1
 * Please read http://www.gnu.org/copyleft/lgpl.html for more information
 *
 * This software comes with the standard NO WARRANTY disclaimer for any
 * purpose. Use it at your own risk. If there’s a problem you get to fix it.
 *
 **/

package matt.bayer.xsbc.project;

import java.io.File;
import java.io.FileWriter;
import org.web3d.xmsf.xsbc.stream.XsbcSerializer;

83

/**
 *
 * @author Matt Bayer, NPS
 *
 * @see SimpleClient
 */
public class SimpleClient {
//public class SimpleClient extends Thread{

 /* DATA MEMBERS */

 /* Private */

 /* Public */

 /** GZipped or not */
 public static boolean isZipped = false;

 /** Designated port */
 public static final int PORT = 4040;

 /** Instance of our working files */
 public static File file;

 /** IP Hostname */
 public static String host = "128.0.0.1";

 /** Substring pointer to our test .xml file */
 public static final String TEST_FILES = "/j35/";

 /** String pointer to NC3A message directory */
 public static final String USER_DIR = "C:/xsbc/examples/NC3ABinXml";

 /** Instance of our XSBC server */
 public static XsbcSerializer s;
 private static FileWriter fwserial;

 public SimpleClient(String host)
 {
 this.host = host;
 }

 /* MAIN METHOD */

 /**
 * Entry point for the program
 *
 * @param args the command line entry arguments if any
 */
 public static void main(){
 //public void run(){

 try{
 fwserial = new FileWriter("c:/xsbc/data/serial.txt");

 File file = new File(USER_DIR + TEST_FILES);
 File[] fArray = file.listFiles();

 for (int i = 0; i < fArray.length; i++) {
 s = new XsbcSerializer(fArray[i].getPath());
 s.writeNetwork(host, PORT, isZipped);

 fwserial.write(String.valueOf(s.getSerialTime()));

84

 fwserial.write("\n");
 fwserial.flush();

 }
 fwserial.close();
 } // end try
 catch (Exception e)
 { e.printStackTrace();}

 } // end main()

} // end class file SimpleServer.java

3. SimpleServer.java

/*
 * SimpleServer.java
 *
 * Created on August 19, 2005, 12:46 PM
 *
 * To change this template, choose Tools | Options and locate the template under
 * the Source Creation and Management node. Right-click the template and choose
 * Open. You can then make changes to the template in the Source Editor.
 */

package matt.bayer.xsbc.project;

import java.io.File;
import java.io.FileWriter;
import java.io.InputStream;
import java.net.*;
import org.web3d.xmsf.xsbc.stream.XsbcTransaction;
import cubbyhole.CubbyHole;

/**
 *
 * @author Matt Bayer, NPS
 *
 * @see SimpleServer
 */
public class SimpleServer extends Thread{

 /** Specify working port */
 public static final int PORT = 4040;

 /** Pointer to our required schema */
 public static final File SCHEMA =
 new File("C:/xsbc/examples/NC3ABinXml/jmsg_input.xsd");

 /** Instance of our TCP socket */
 public static ServerSocket socket;

 /** Instance our XSBC client */
 public static XsbcTransaction trans;

 /** Instance of a thread for the client */
 public static Thread t;
 private static FileWriter fwdeserial;

85

 private static FileWriter fwlatency;
 private CubbyHole ch;

 public SimpleServer(CubbyHole c)
 {
 // associates passed parameter c CubbyHole with local ch CubbyHole
 ch = c;
 }

 /**
 * Entry point for the program
 *
 * @param args the command line entry arguments if any
 */
 public void run(){

 try {

 socket = new ServerSocket(PORT);
 fwdeserial = new FileWriter("c:/xsbc/data/deserial.txt");
 fwlatency = new FileWriter("c:/xsbc/data/latency.txt");

 for (int i = 0; i < 960; i++) {

 trans = new XsbcTransaction(socket.accept(), i, SCHEMA, ch);
 t = new Thread(trans, "xsbcTrans");
 t.start();

 fwlatency.write(String.valueOf(ch.getLatency()));
 fwdeserial.write(String.valueOf(ch.getDeserial()));
 // fwdeserial.write(String.valueOf(trans.getDeserialTime()));
 // fwlatency.write(String.valueOf(trans.getLatencyTime()));

 fwdeserial.write("\n");
 fwdeserial.flush();

 fwlatency.write("\n");
 fwlatency.flush();

 } // end for loop
 fwlatency.close();
 fwdeserial.close();

 } catch (Exception e) {

 e.printStackTrace();

 } // end try-catch block

 } // end main

} // end class file SimpleServer.java

86

4. XsbcSerializer.java
/*
Copyright (c) 1995-2005 held by the author(s). All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer
 in the documentation and/or other materials provided with the
 distribution.
 * Neither the names of the Naval Postgraduate School (NPS)
 Modeling Virtual Environments and Simulation (MOVES) Institute
 (http://www.nps.edu and http://www.MovesInstitute.org)
 nor the names of its contributors may be used to endorse or
 promote products derived from this software without specific
 prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/

/* Program: Extensible Markup Language (XML) Schema-based Binary
 * Compression (XSBC) with Forward Error Correction (FEC)
 *
 * Author: Duane Davis
 * Modifier: Terry Norbraten, Matt Bayer NPS MOVES
 *
 * Created on: Janurary 31, 2004
 * Modified on: August 20, 2005
 * Time: 1415:18
 *
 * File: XsbcSerializer.java
 *
 * Compiler: netBeans IDE 4.1 (External), j2sdk1.4.2_08
 * O/S: Windows XP Home Ed. (SP2)
 *
 * Description: Reads and XML document and compresses it with XSBC
 *
 * Information: Modified to feed timestamp into OutputStream for network
 * latency metric analysis, calculate serialization time and move
 * setCompressedMethod() to the constructor
 */
package org.web3d.xmsf.xsbc.stream;

// Standard library imports
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileOutputStream;

87

import java.io.IOException;
import java.io.OutputStream;
import java.io.FileWriter;

import java.net.InetAddress;
import java.net.Socket;

import java.util.Date;
import java.util.zip.GZIPOutputStream;

// Application specific local imports
import org.web3d.xmsf.xsbc.DocumentWriter;
import org.web3d.xmsf.xsbc.datatypes.SimpleType;
import org.web3d.xmsf.xsbc.util.DecodeEncodePrimitives;
import org.web3d.xmsf.xsbc.util.Utilities;

/**
 * Reads an XML file and compresses it using XSBC. The result can be written to
 * a file or the network. </p>
 *
 * @version $Revision: 1.6 $
 * <p>
 * <dt>Latest Modifications:
 * <pre>
 * Date: 01 AUG 2005
 * Time: 1318:10
 * Author: Terry Norbraten
 * Comments: Modified to optimize Output Stream wrapping for serialization
 * </pre>
 * <pre>
 * Date: August 20, 2005
 * Time: 1415:18
 * Author: Terry Norbraten
 * Comments: Modified to feed timestamp into OutputStream for network
 * latency metric analysis, calculate serialization time and move
 * setCompressedMethod() to the constructor
 * </pre>
 * </p>
 * @author Duane T. Davis
 *<P>
 *Contact: Don Brutzman (<i>web.nps.navy.mil/~brutzman</i>)
 * <A HREF="mailto:brutzman@nps.navy.mil(Don Brutzman)?subject=xsbc feedback
"><i>brutzman@nps.navy.mil</i>
 *<P>
 *@see XsbcTransaction
 */
public class XsbcSerializer {

 /* DATA MEMBERS(s) */

 /** Writer that will facilitate XSBC serialization */
 private DocumentWriter writer;

 /** Input, Output files */
 private File inFile, outFile;
 private long serialTime;

88

 /* CONSTRUCTORS(s) */

 /**
 * Creates a new instance of XsbcSerializer
 *
 * @param inFilePath path (including filename) of input XML file
 */
 public XsbcSerializer(String inFilePath) {

 try {

 inFile = new File(inFilePath);
 writer = new DocumentWriter(inFile.getPath());
 SimpleType.setCompressionMethod(
 SimpleType.COMPRESSION_METHOD_SMALLEST_NONLOSSY);
 serialTime = 0;

 } catch(Exception e) {
 e.printStackTrace();

 } // end try-catch block

 } // end constructor

 /* PUBLIC METHODS(s) */

 /**
 * Writes the Xsbc data to a specified file
 *
 * @return indication of success or failure of writing XSBC
 * @param outFilePath Path (including name) of the output file
 * @param zipped true if output file is to be compressed (zipped)
 */
 public int writeFile(String outFilePath, boolean zipped) {

 try {

 int result;
 setOutFile(new File(outFilePath));
 FileOutputStream fos = new FileOutputStream(getOutFile());

 if (zipped)
 result = writeZippedStream(fos);
 else
 result = writeStream(fos);

 return result;

 } catch (IOException ioe) {

 ioe.printStackTrace();
 return(0);

 } // end try-catch block

 } // end writeFile()

89

 /**
 * Writes the XSBC data to a network address by opening a socket
 * Closes the socket once write is complete
 *
 * @param host the server Hostname
 * @param port the port on host to connect to
 * @param zipped is true if the file is to be compressed, false if not
 * @return an indication of success or failure
 */
 public int writeNetwork(String host, int port, boolean zipped) {

 int result = 0;
 Socket socket = null;
 long timeStamp = 0, timeNow = 0;

 try {

 socket = new Socket(InetAddress.getByName(host), port);
 OutputStream os = socket.getOutputStream();

 // Insert a time stamp into output stream for network latency metric
 // analysis
 os.write(DecodeEncodePrimitives.encodeLong(new Date().getTime()));
 os.flush();

 timeNow = new Date().getTime();
 timeStamp = timeNow;

 if (zipped)
 result = writeZippedStream(os);
 else
 result = writeStream(os);

 timeNow = new Date().getTime();

 } catch (Exception e) {

 Utilities.debugOut("Unable to establish network connection for " +
 "XSBC-compressed archive transfer");
 Utilities.debugOut(e.getMessage());
// e.printStackTrace();

 } // end try-catch block

 try {

 if(socket != null)
 socket.close();

 } catch (IOException e) {}

 Utilities.traceOut("Serializer processing time for " + inFile + " was: "
 + String.valueOf(timeNow - timeStamp) + " ms");
 serialTime = timeNow - timeStamp;

 return result;

 } // end writeNetwork()

90

 /* GETTER(s) and SETTER(s) */

 /**
 * Sets the out going *.xml file for encoding (tdn)
 *
 * @param file the *.xml file to encode
 */
 public void setOutFile(File file) {

 outFile = file;

 } // end setOutFile()

 /**
 * Retrieves the out going *.xml file for encoding (tdn)
 *
 * @return the *.xml for encoding
 */
 public File getOutFile() {

 return outFile;

 } // end getOutFile()

 /* PROTECTED METHOD(s) */

 /* PRIVATE METHOD(s) */

 /**
 * Writes the XSBC data to an output stream. Does not open stream.</p>
 *
 * @param stream the OutputStream to write Xsbc to
 * @return the indication of success or failure
 */
 private int writeStream(OutputStream stream) {

 try {

 DataOutputStream dos = new DataOutputStream(stream);
 writer.serialize(dos);
 dos.close();
 stream.close();
 return(1);

 } catch (Exception e) {
 Utilities.debugOut("Unable to write XSBC to stream\n" + e.getMessage());
// e.printStackTrace();
 return(0);
 } // catch (Exception e)

 } // end writeStream()

 /**
 * Writes the XSBC data to an output stream in zipped form. Does not open
 * the stream. </p>
 *
 * @param stream the output stream to write compressed Xsbc to
 * @return the indication of success or failure in serializing the xml file
 * @exception IOException
 * If there was a problem in XSBC serializing the input file
 */
 private int writeZippedStream(OutputStream stream) {

91

 try {

 GZIPOutputStream zipStream = new GZIPOutputStream(stream);
 DataOutputStream dos = new DataOutputStream(zipStream);
 writer.serialize(dos);
 dos.close();
 zipStream.close();
 stream.close();
 return(1);

 } catch (IOException ioe) {

 Utilities.debugOut("Unable to write XSBC to Zip Stream");
 ioe.printStackTrace();
 return(0);

 } // end try-catch block

 } // end writeStreamZipped()

 public long getSerialTime()
 {
 return serialTime;
 }

} // end class file XSBCSerializer.java

5. XsbcTransaction.java

/*
Copyright (c) 1995-2005 held by the author(s). All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer
 in the documentation and/or other materials provided with the
 distribution.
 * Neither the names of the Naval Postgraduate School (NPS)
 Modeling Virtual Environments and Simulation (MOVES) Institute
 (http://www.nps.edu and http://www.MovesInstitute.org)
 nor the names of its contributors may be used to endorse or
 promote products derived from this software without specific
 prior written permission.

92

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/

/* Program: Extensible Markup Language (XML) Schema-based Binary
 * Compression (XSBC) with Forward Error Correction (FEC)
 *
 * Author: Duane Davis
 * Modifier: Terry Norbraten, NPS MOVES
 *
 * Created on: February 01, 2004: 0006
 * Modified on: August 20, 2005
 * Time: 1415:18
 *
 * File: XsbcTransaction.java
 *
 * Compiler: netBeans IDE 4.1 (External), j2sdk1.4.2_08
 * O/S: Windows XP Home Ed. (SP2)
 *
 * Description: Accepts a TCP stream of compressed data to de-serialize and/or
 * uncompresses and de-serialize back into *.xml form
 *
 * Information: Modified to read timestamp from InputStream for network latency
 * metrics analysis and to calculate deserialization time
 */
package org.web3d.xmsf.xsbc.stream;

// Standard library imports
import java.io.BufferedInputStream;
import java.io.FileOutputStream;
import java.io.File;
import java.io.InputStream;
import java.io.FileWriter;
import java.net.Socket;
import java.util.Date;

// Application specific local imports
import org.apache.batik.util.ParsedURLData;
import org.web3d.xmsf.xsbc.*;
import org.web3d.xmsf.xsbc.datatypes.*;
import org.web3d.xmsf.xsbc.util.DecodeEncodePrimitives;
import org.web3d.xmsf.xsbc.util.Utilities;
import cubbyhole.CubbyHole;

93

/**
 * Accepts a TCP stream of compressed data to de-serialize and/or uncompresses
 * and de-serialize back into *.xml form.
 *
 * @version $Revision: 1.3 $
 * <p>
 * <dt>Latest Modification:
 * <pre>
 * Date: 08 MAY 2005
 * Time: 2041:20
 * Author: Terry Norbraten
 * Comments: Modified to accept a schema for *.xml deserialization and to
 * handle a non-GZipped InputStream.
 * </pre>
 * <pre>
 * Date: August 20, 2005
 * Time: 1415:18
 * Author: Terry Norbraten
 * Comments: Modified to read timestamp from InputStream for network latency
 * metrics analysis and to calculate deserialization time
 * </pre>
 * </p>
 * @author Duane T. Davis
 * <P>
 *Contact: Don Brutzman (<i>web.nps.navy.mil/~brutzman</i>)
 * <A HREF="mailto:brutzman@nps.navy.mil(Don Brutzman)?subject=xsbc feedback
"><i>brutzman@nps.navy.mil</i>
 *<P>
 *@see XsbcSerializer
 */
public class XsbcTransaction implements Runnable {

 /* DATA MEMBER(s) */

 /* Public */

 /* Protected */

 /* Private */

 /** Required stream for the XSBCReader */
 private BlockDataInputStream bdis;

 /** Required stream for the BlockDataInputStream */
 private BufferedInputStream bis;

 /** Final file and schema objects */
 private File outFile,
 schemaLoc;

 /** Required stream for the XMLWriter */
 private FileOutputStream fos;

 /** The socket's TCP input stream */
 private InputStream iStream;

 /** Our TCP socket */
 private Socket socket;

 /** Used to hold schema info for XML document deserialization */
 private TableManager tableManager;

94

 /** Writer for the deserialized XML file */
 private XMLWriter writer;

 /** Reader for XSBC to XML deserialization */
 private XSBCReader reader;

 /** Dummy id tag for the mission results file */
 private int transactionId;

 /** Metrics for various processing times */
 private long deserializationTimeBefore,
 deserializationTimeAfter;

 /** Point to the data cache folder */
 private final String DATACACHE = System.getProperty("user.dir") +
 "/dataweb/results/";

 /** File base name for resulting .xsbc file */
 private final String CACHEFILE = "resultXsbc";

 private CubbyHole ch;
 /* CONSTRUCTOR(s) */

 /**
 * Creates a new instance of XsbcTransaction
 *
 * @param socket the socket over which the transaction will take place
 * @param id the of this transaction
 * @param schema the schema to load into the XSBC Table Manager
 */
 public XsbcTransaction(Socket socket, int id, File schema) {

 this.socket = socket;
 transactionId = id;
 schemaLoc = schema;

 } // end constructor

 public XsbcTransaction(Socket socket, int id, File schema, CubbyHole c)
 {
 this.socket = socket;
 transactionId = id;
 schemaLoc = schema;

 // CubbyHole from project main is passed to local CubbyHole
 ch = c;
 }

 /* THREAD PROCESS */

 /** Processes the XSBC transaction */
 public void run() {

 Utilities.traceOut("External network connection made. Begin XSBC " +
 "file upload");

 SimpleType.setCompressionMethod(
 SimpleType.COMPRESSION_METHOD_SMALLEST_NONLOSSY);

 try {

 iStream = this.socket.getInputStream();

95

 // Extract timestamp sent from XsbcSerializer. Long integers are eight
 // bytes in length.
 byte[] b = new byte[8];
 iStream.read(b, 0, b.length);
 long timeStamp = DecodeEncodePrimitives.decodeLong(b);
 long timeNow = new Date().getTime();
 Utilities.traceOut("Network latency is calculated at: " +
 String.valueOf(timeNow - timeStamp) + " ms");

 ch.putLatency(timeNow - timeStamp);

 // Check for iStream in GZip format
 bis = new BufferedInputStream(ParsedURLData.checkGZIP(iStream));
 Utilities.traceOut("Loading XSBC data ");
 Utilities.traceOut("XSBC using schema located at " +
schemaLoc.toURL());
 bdis = new BlockDataInputStream(bis);
 outFile = new File(DATACACHE + CACHEFILE + transactionId + ".xml");
 fos = new FileOutputStream(outFile);
 writer = new XMLWriter(fos);
 tableManager = new TableManager(schemaLoc.toURL());
 reader = new XSBCReader(tableManager);

 deserializationTimeBefore = new Date().getTime();
 reader.read(bdis, writer);
 deserializationTimeAfter = new Date().getTime();

 // Time stamp created for NC3A metrics
 Utilities.traceOut("Deserialization processing time for " + outFile
 + " was: "
 + (deserializationTimeAfter - deserializationTimeBefore)
 + " ms");

 ch.putDeserial(deserializationTimeAfter - deserializationTimeBefore);

 // Reclaim resources
 iStream.close();
 bis.close();
 bdis.close();
 fos.close();
 Utilities.traceOut("Archive file successfully uploaded");

 if (socket != null) {

 socket.close();
 Utilities.traceOut("Transaction socket now closed");

 } // end if

 } catch (Exception e) {

 System.err.println("Problem encountered while de-serializing " +
 "file");
 e.printStackTrace();

 } // end try-catch block

 } // end run()

} // end class file XsbcTransaction.java

96

6. CubbyHole.java

/*
 * CubbyHole.java
 *
 * Created on August 24, 2005, 3:15 PM
 */

package matt.bayer.xsbc.project;

/**
 *
 * @author mebayer modified from
 * http://java.sun.com/docs/books/tutorial/essential/threads/
 */
public class CubbyHole {
 private long lcontents, dcontents;
 private boolean available = false;

 public synchronized long getLatency() {
 while (available == false) {
 try {
 wait();
 } catch (InterruptedException e) { }
 }
 available = false;

 notifyAll();
 return lcontents;
 }

 public synchronized long getDeserial() {
 while (available == false) {
 try {
 wait();
 } catch (InterruptedException e) { }
 }
 available = false;

 notifyAll();
 return dcontents;
 }

 public synchronized void putLatency(long value) {
 while (available == true) {
 try {
 wait();
 } catch (InterruptedException e) { }
 }
 lcontents = value;
 available = true;

 notifyAll();
 }

 public synchronized void putDeserial(long value) {
 while (available == true) {
 try {
 wait();
 } catch (InterruptedException e) { }

97

 }
 dcontents = value;
 available = true;

 notifyAll();
 }
}

98

THIS PAGE INTENTIONALLY LEFT BLANK

99

LIST OF REFERENCES

Air Land Sea Application Center. (2000). TADIL J: Introduction to Tactical Digital

Information Link J and Quick Reference Guide. Retrieved October 3, 2005 from

https://www.doctrine.usmc.mil/signpubs/r325c.pdf

Alberts, D. S., Garstka, J. J., & Stein, F. P. (1999). Network Centric Warfare:

Developing and Leveraging Information Superiority (2nd ed.). Washington D.C.:

CCRP.

Blais, C., Brutzman, D., Drake, D., Moen, D., Morse, K., Pullen, M., and Tolk, A.,

Extensible Modeling and Simulation Framework (XMSF) 2004 Project Summary

Report, NPS-MV-05-002, Naval Postgraduate School MOVES Institute,

Monterey, CA, 4 February 2005.

Boss, B. (2003). XML in 10 points. Retrieved September/20, 2005 from

http://www.w3.org/XML/1999/XML-in-10-points

Bray, Tim., Paoli, Jean., Sperberg-Mcqueen., Maler, Eve. & Yergeau, Francois.

(2004) Extensible Markup Language (XML) 1.0 (Third Edition) Retrieved from

September 30, 2005 from http://www.w3.org/TR/2004/REC-xml-20040204/

Cokus, M., & Percias-Geertsen, S. (2005a). XML Binary Characterization Use

Cases. Retrieved September 14, 2005 from http://www.w3.org/TR/xbc-use-

cases/

Cokus, M., & Percias-Geertsen, S. (2005b). XML Binary Characterization Properties.

Retrieved September 14, 2005 from http://www.w3.org/TR/xbc-properties/

Conner, M., & Mendelsohn, N. (2003). Issues Relating to the Creation of a Binary

Interchange Standard for XML. Armonk, NY: IBM Corporation. August 23, 2005.

Cown, John. & Tobin, Richard. (2004). XML Information Set (Second Edition).

 Retrieved September 30, 2005 from http://www.w3.org/TR/xml-infoset/

100

Downs, E. (2005). Digital Datalinks. Retrieved August 25, 2005 from

http://www4.janes.com.libproxy.nps.navy.mil/K2/doc.jsp?t=Q&K2DocKey=/conte

nt1/janesdata/yb/jav/jav_9709.htm@current&QueryText=%3CAND%3E(%3COR

%3E((%5B80%5D(TADIL+%3CAND%3E+J)+%3CIN%3E+body)%2C+(%5B100

%5D(%5B100%5D(TADIL+%3CAND%3E+J)+%3CIN%3E+title)+%3CAND%3

Goldman, O., & Lenkov, D. (2005). XML Binary Characterization. Retrieved

September 2, 2005 from http://www.w3.org/TR/xbc-characterization/

Gudgin, M. (2004). Understanding Infosets. Retrieved September 06, 2005 from

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnxml/html/xmlinfoset.asp

Howland, P. E., (2004). Near Real-Time Tactical Data Services for Network Enabled

Operations. Unpublished manuscript. Retrieved April 13, 2005,

Hunter, D., Cagle, K., Dix, C., Kovack, R., Pinnock, J., & Rafter, J. (2003). Chapter

6: XML Schema. Beginning XML (2nd ed.) (pp. 217). Indianapolis: Wiley

Publishing Inc.

Leung, T. W. (2004). Chapter 10: XML Security. XML Development with Apache

Tools Xerces, Xalan, FOP, Cocoon, Axis, Xindice (pp. 455). Indianapolis: Wiley

Publishing Inc.

Lilley, C. & Karmarkar, A.. (2003). Report From the W3C Workshop on Binary

Interchange of XML Information Item Sets. Santa Clara, California, Retrieved

October 3, 2005,

McGregor, D. (2000). Dial-A-behavior Protocol. Retrieved October 20, 2005 from

http://www.movesinstitute.org/~mcgredo/dabp/

Muller, D. K. (2003). NATO and XML. Retrieved August 19, 2005 from

http://www.gca.org/papers/xmleurope2000/papers/s16-03.html

101

Norbraten, T D. (2004) Utilization of Forward Error Correction (FEC) Techniques

with Extensible Markup Language (XML) Schema-Based Binary Compression

(XSBC) Technology. (Master’s Thesis, Naval Postgraduate School). (Public

Release)

Orchard, D. (2003). Finding the 80/20 point for XML performance (Position

Presentation. San Jose, California: BEA Systems.

Pal, S., Marsh, J., & Layman, A. (2003). A Case Against Standardizing Binary

Representation of XML (Position Paper. Redmond, WA: Microsoft Corporation.

Pike, J. (2000). Tactical Data Information Links. Retrieved August 24, 2005 from

http://www.fas.org/irp/program/disseminate/tadil.htm

Raggett, D., Le Hors, A., & Jacobs, I. (1999) HTML 4.01 Specification. Retrieved

October 3, 2005 from http://www.w3.org/TR/REC-html40/sgml/entities.html

Sandoz, P. (2005). Fast Infoset and Fast Web Services. Sun Microsystems.

Retrieved August 7, 2005, from www.itu.int/ITU-T/studygroups/

com17/tutorials/tutorial_2005_03_30_sandoz.pdf

Sandoz, P., & Percias-Geersten, S. (2005). Fast Infoset @ Java.net. Retrieved

September 05, 2005 from http://idealliance.org/proceedings/xtech05/papers/04-

01-01/

Sandoz P., Percias-Geersten, S & Brutzman, D. (2005) Fast Infoset: A Fast,

Effective and Practical Binary Encoding for the XML Infoset. 2005 JavaOne

Conference, Sun Microsystems.

Sandoz, P., Triglia, A. & Percias-Geertsen, S. (2004). Fast Infoset. Retrieved

September 5, 2005 from

http://java.sun.com/developer/technicalArticles/xml/fastinfoset/

102

Serin, E. (2003). Design and Test for the Cross Format Schema Protocol (XFSP) for

Networked Virtual Environments. (Master’s Thesis, Naval Postgraduate School).,

(Public Release)

Sun Microsystems. (2005). The Java Tutorial: Data types. Retrieved September 20,

2005 from

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/datatypes.html W3C

Recommendations. (2004).

Web3D Consortium. (2003). X3D Compressed Binary Encoding Request for

Proposals (RFP). Retrieved September 28, 2005 from

http://www.web3d.org/x3d/binary/index.html

Web3D Consortium. (2005a). X3D Overview. Retrieved September 28, 2005 from

http://www.web3d.org/x3d/overview.html

Web3D Consortium. (2005b). Extensible 3D Encodings. Part 3 Binary Encodings:

Introduction. Retrieved September 28, 2005 from

http://www.web3d.org/x3d/specifications/ISO-IEC-19776-3-CD-X3DEncodings-

CompressedBinary/

Wikipedia: The Free Encyclopedia. (2005.) Moore’s law. Retrieved September, 30

2005 from http://en.wikipedia.org/wiki/Moore%27s_law

103

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library

Naval Postgraduate School
Monterey, CA

3. Head, Information Operations and Space Integration Branch

PLI/PP&O/HQMC,
Washington, DC

4. Dario Cadamuro

NATO C3 Agency
The Hague, Netherlands

5. Dan Boger

Naval Postgraduate School
Monterey, CA

6. Don Brutzman

Naval Postgraduate School
Monterey, CA

7. Terry Norbraten

Naval Postgraduate School
Monterey, CA

8. Don McGregor

Naval Postgraduate School
Monterey, CA

9. Paul Sandoz
 Sun Microsystems
 Palo Alto, CA

10. Santiago Percias-Geertsen
 Sun Microsystems
 Palo Alto, CA

11. Emil Serpa
 Sun Microsystems
 Palo Alto, CA

104

12. John Schneider
 AgileDelta
 Bellevue, WA

13. CAPT Scot Miller, USN
 Naval Center for Tactical Systems Interoperability
 San Diego, CA

14. Chris Gunderson

Naval Postgraduate School
Monterey, CA

15. Richard Lee
 Office of the Secretary of Defense
 Washington, D.C.

16. Erik Chaum
 Naval Undersea Warfare Center
 Newport, RI

17. Web3D Consortium
 San Francisco, CA

18. Efficient XML Interchange

World Wide Web Consortium
Cambridge, MA

19. Mark Falash
 Link Simulation and Training
 Arlington, TX

20. Eytan Pollak

Link Simulation and Training
 Arlington, TX

21. Mark Pullen
 George Mason University
 Fairfax, VA

22. Andreas Tolk
 Old Dominion University
 Norfolk, VA

23. Katherine Morse
 AVP Technology, SAIC
 San Diego, CA

105

24. Undersea Warfare XML List
Naval Postgraduate School
Monterey, CA

25. Undersea Warfare Announcements List

Naval Postgraduate School
Monterey, CA

